R
↳Dependency Pair Analysis
+'(0(x), 0(y)) -> 0'(+(x, y))
+'(0(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(1(x), 1(y)) -> 0'(+(+(x, y), 1(#)))
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 1(y)) -> +'(x, y)
*'(0(x), y) -> 0'(*(x, y))
*'(0(x), y) -> *'(x, y)
*'(1(x), y) -> +'(0(*(x, y)), y)
*'(1(x), y) -> 0'(*(x, y))
*'(1(x), y) -> *'(x, y)
SUM(nil) -> 0'(#)
SUM(cons(x, l)) -> +'(x, sum(l))
SUM(cons(x, l)) -> SUM(l)
PROD(cons(x, l)) -> *'(x, prod(l))
PROD(cons(x, l)) -> PROD(l)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
six new Dependency Pairs are created:
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x''), 1(#)) -> +'(x'', 1(#))
+'(1(#), 1(y')) -> +'(y', 1(#))
+'(1(0(x'')), 1(0(y''))) -> +'(0(+(x'', y'')), 1(#))
+'(1(0(x'')), 1(1(y''))) -> +'(1(+(x'', y'')), 1(#))
+'(1(1(x'')), 1(0(y''))) -> +'(1(+(x'', y'')), 1(#))
+'(1(1(x'')), 1(1(y''))) -> +'(0(+(+(x'', y''), 1(#))), 1(#))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 5
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
+'(1(1(x'')), 1(1(y''))) -> +'(0(+(+(x'', y''), 1(#))), 1(#))
+'(1(1(x'')), 1(0(y''))) -> +'(1(+(x'', y'')), 1(#))
+'(1(0(x'')), 1(1(y''))) -> +'(1(+(x'', y'')), 1(#))
+'(1(0(x'')), 1(0(y''))) -> +'(0(+(x'', y'')), 1(#))
+'(1(#), 1(y')) -> +'(y', 1(#))
+'(1(x''), 1(#)) -> +'(x'', 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
+'(1(1(x'')), 1(0(y''))) -> +'(1(+(x'', y'')), 1(#))
+'(1(0(x'')), 1(0(y''))) -> +'(0(+(x'', y'')), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
POL(#) = 0 POL(0(x1)) = 1 + x1 POL(1(x1)) = x1 POL(+(x1, x2)) = 0 POL(+'(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 5
↳Polo
...
→DP Problem 6
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
+'(1(1(x'')), 1(1(y''))) -> +'(0(+(+(x'', y''), 1(#))), 1(#))
+'(1(0(x'')), 1(1(y''))) -> +'(1(+(x'', y'')), 1(#))
+'(1(#), 1(y')) -> +'(y', 1(#))
+'(1(x''), 1(#)) -> +'(x'', 1(#))
+'(0(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
+'(1(1(x'')), 1(1(y''))) -> +'(0(+(+(x'', y''), 1(#))), 1(#))
+'(1(0(x'')), 1(1(y''))) -> +'(1(+(x'', y'')), 1(#))
+'(0(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(x, y)
POL(#) = 0 POL(0(x1)) = 0 POL(1(x1)) = 1 + x1 POL(+(x1, x2)) = 0 POL(+'(x1, x2)) = x2
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 5
↳Polo
...
→DP Problem 7
↳Instantiation Transformation
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
+'(1(#), 1(y')) -> +'(y', 1(#))
+'(1(x''), 1(#)) -> +'(x'', 1(#))
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
one new Dependency Pair is created:
+'(1(#), 1(y')) -> +'(y', 1(#))
+'(1(#), 1(#)) -> +'(#, 1(#))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 5
↳Polo
...
→DP Problem 8
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
+'(1(x''), 1(#)) -> +'(x'', 1(#))
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
+'(1(x''), 1(#)) -> +'(x'', 1(#))
POL(#) = 0 POL(1(x1)) = 1 + x1 POL(+'(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 5
↳Polo
...
→DP Problem 9
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
*'(1(x), y) -> *'(x, y)
POL(0(x1)) = x1 POL(*'(x1, x2)) = x1 POL(1(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Polo
→DP Problem 10
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
*'(0(x), y) -> *'(x, y)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
*'(0(x), y) -> *'(x, y)
POL(0(x1)) = 1 + x1 POL(*'(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Polo
→DP Problem 10
↳Polo
...
→DP Problem 11
↳Dependency Graph
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 4
↳Polo
SUM(cons(x, l)) -> SUM(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
SUM(cons(x, l)) -> SUM(l)
POL(SUM(x1)) = x1 POL(cons(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 12
↳Dependency Graph
→DP Problem 4
↳Polo
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polynomial Ordering
PROD(cons(x, l)) -> PROD(l)
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))
PROD(cons(x, l)) -> PROD(l)
POL(cons(x1, x2)) = 1 + x2 POL(PROD(x1)) = x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 13
↳Dependency Graph
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))