Term Rewriting System R:
[x, y, l]
0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

+'(0(x), 0(y)) -> 0'(+(x, y))
+'(0(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)
+'(1(x), 1(y)) -> 0'(+(+(x, y), 1(#)))
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 1(y)) -> +'(x, y)
*'(0(x), y) -> 0'(*(x, y))
*'(0(x), y) -> *'(x, y)
*'(1(x), y) -> +'(0(*(x, y)), y)
*'(1(x), y) -> 0'(*(x, y))
*'(1(x), y) -> *'(x, y)
SUM(nil) -> 0'(#)
SUM(cons(x, l)) -> +'(x, sum(l))
SUM(cons(x, l)) -> SUM(l)
PROD(cons(x, l)) -> *'(x, prod(l))
PROD(cons(x, l)) -> PROD(l)

Furthermore, R contains four SCCs.


   R
DPs
       →DP Problem 1
Narrowing Transformation
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo


Dependency Pairs:

+'(1(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

+'(1(x), 1(y)) -> +'(+(x, y), 1(#))
six new Dependency Pairs are created:

+'(1(x''), 1(#)) -> +'(x'', 1(#))
+'(1(#), 1(y')) -> +'(y', 1(#))
+'(1(0(x'')), 1(0(y''))) -> +'(0(+(x'', y'')), 1(#))
+'(1(0(x'')), 1(1(y''))) -> +'(1(+(x'', y'')), 1(#))
+'(1(1(x'')), 1(0(y''))) -> +'(1(+(x'', y'')), 1(#))
+'(1(1(x'')), 1(1(y''))) -> +'(0(+(+(x'', y''), 1(#))), 1(#))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 5
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo


Dependency Pairs:

+'(1(1(x'')), 1(1(y''))) -> +'(0(+(+(x'', y''), 1(#))), 1(#))
+'(1(1(x'')), 1(0(y''))) -> +'(1(+(x'', y'')), 1(#))
+'(1(0(x'')), 1(1(y''))) -> +'(1(+(x'', y'')), 1(#))
+'(1(0(x'')), 1(0(y''))) -> +'(0(+(x'', y'')), 1(#))
+'(1(#), 1(y')) -> +'(y', 1(#))
+'(1(x''), 1(#)) -> +'(x'', 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 1(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(x, y)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))





The following dependency pairs can be strictly oriented:

+'(1(1(x'')), 1(1(y''))) -> +'(0(+(+(x'', y''), 1(#))), 1(#))
+'(1(0(x'')), 1(1(y''))) -> +'(1(+(x'', y'')), 1(#))
+'(0(x), 1(y)) -> +'(x, y)
+'(1(x), 1(y)) -> +'(x, y)


Additionally, the following usable rules using the Ce-refinement can be oriented:

0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(#)=  0  
  POL(0(x1))=  x1  
  POL(1(x1))=  1 + x1  
  POL(+(x1, x2))=  x1 + x2  
  POL(+'(x1, x2))=  x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 5
Polo
             ...
               →DP Problem 6
Dependency Graph
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo


Dependency Pairs:

+'(1(1(x'')), 1(0(y''))) -> +'(1(+(x'', y'')), 1(#))
+'(1(0(x'')), 1(0(y''))) -> +'(0(+(x'', y'')), 1(#))
+'(1(#), 1(y')) -> +'(y', 1(#))
+'(1(x''), 1(#)) -> +'(x'', 1(#))
+'(1(x), 0(y)) -> +'(x, y)
+'(0(x), 0(y)) -> +'(x, y)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))





Using the Dependency Graph the DP problem was split into 2 DP problems.


   R
DPs
       →DP Problem 1
Nar
           →DP Problem 5
Polo
             ...
               →DP Problem 7
Instantiation Transformation
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo


Dependency Pairs:

+'(1(#), 1(y')) -> +'(y', 1(#))
+'(1(x''), 1(#)) -> +'(x'', 1(#))


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))





On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

+'(1(#), 1(y')) -> +'(y', 1(#))
one new Dependency Pair is created:

+'(1(#), 1(#)) -> +'(#, 1(#))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 5
Polo
             ...
               →DP Problem 9
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo


Dependency Pair:

+'(1(x''), 1(#)) -> +'(x'', 1(#))


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))





The following dependency pair can be strictly oriented:

+'(1(x''), 1(#)) -> +'(x'', 1(#))


There are no usable rules using the Ce-refinement that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(#)=  0  
  POL(1(x1))=  1 + x1  
  POL(+'(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 5
Polo
             ...
               →DP Problem 8
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo


Dependency Pairs:

+'(0(x), 0(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))





The following dependency pairs can be strictly oriented:

+'(0(x), 0(y)) -> +'(x, y)
+'(1(x), 0(y)) -> +'(x, y)


There are no usable rules using the Ce-refinement that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(0(x1))=  1 + x1  
  POL(1(x1))=  0  
  POL(+'(x1, x2))=  x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
           →DP Problem 5
Polo
             ...
               →DP Problem 10
Dependency Graph
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo


Dependency Pair:


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo


Dependency Pairs:

*'(1(x), y) -> *'(x, y)
*'(0(x), y) -> *'(x, y)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))





The following dependency pair can be strictly oriented:

*'(1(x), y) -> *'(x, y)


There are no usable rules using the Ce-refinement that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(0(x1))=  x1  
  POL(*'(x1, x2))=  x1  
  POL(1(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Polo
           →DP Problem 12
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo


Dependency Pair:

*'(0(x), y) -> *'(x, y)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))





The following dependency pair can be strictly oriented:

*'(0(x), y) -> *'(x, y)


There are no usable rules using the Ce-refinement that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(0(x1))=  1 + x1  
  POL(*'(x1, x2))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Polo
           →DP Problem 12
Polo
             ...
               →DP Problem 13
Dependency Graph
       →DP Problem 3
Polo
       →DP Problem 4
Polo


Dependency Pair:


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Polo
       →DP Problem 3
Polynomial Ordering
       →DP Problem 4
Polo


Dependency Pair:

SUM(cons(x, l)) -> SUM(l)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))





The following dependency pair can be strictly oriented:

SUM(cons(x, l)) -> SUM(l)


There are no usable rules using the Ce-refinement that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(SUM(x1))=  x1  
  POL(cons(x1, x2))=  1 + x2  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 14
Dependency Graph
       →DP Problem 4
Polo


Dependency Pair:


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polynomial Ordering


Dependency Pair:

PROD(cons(x, l)) -> PROD(l)


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))





The following dependency pair can be strictly oriented:

PROD(cons(x, l)) -> PROD(l)


There are no usable rules using the Ce-refinement that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(cons(x1, x2))=  1 + x2  
  POL(PROD(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Nar
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 15
Dependency Graph


Dependency Pair:


Rules:


0(#) -> #
+(x, #) -> x
+(#, x) -> x
+(0(x), 0(y)) -> 0(+(x, y))
+(0(x), 1(y)) -> 1(+(x, y))
+(1(x), 0(y)) -> 1(+(x, y))
+(1(x), 1(y)) -> 0(+(+(x, y), 1(#)))
*(#, x) -> #
*(0(x), y) -> 0(*(x, y))
*(1(x), y) -> +(0(*(x, y)), y)
sum(nil) -> 0(#)
sum(cons(x, l)) -> +(x, sum(l))
prod(nil) -> 1(#)
prod(cons(x, l)) -> *(x, prod(l))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes