Term Rewriting System R:
[x, y, l, l1, l2, l3]
if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

EQ(s(x), s(y)) -> EQ(x, y)
APP(cons(x, l1), l2) -> APP(l1, l2)
APP(app(l1, l2), l3) -> APP(l1, app(l2, l3))
APP(app(l1, l2), l3) -> APP(l2, l3)
MEM(x, cons(y, l)) -> IFMEM(eq(x, y), x, l)
MEM(x, cons(y, l)) -> EQ(x, y)
IFMEM(false, x, l) -> MEM(x, l)
INTER(app(l1, l2), l3) -> APP(inter(l1, l3), inter(l2, l3))
INTER(app(l1, l2), l3) -> INTER(l1, l3)
INTER(app(l1, l2), l3) -> INTER(l2, l3)
INTER(l1, app(l2, l3)) -> APP(inter(l1, l2), inter(l1, l3))
INTER(l1, app(l2, l3)) -> INTER(l1, l2)
INTER(l1, app(l2, l3)) -> INTER(l1, l3)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)
INTER(cons(x, l1), l2) -> MEM(x, l2)
INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
INTER(l1, cons(x, l2)) -> MEM(x, l1)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)
IFINTER(false, x, l1, l2) -> INTER(l1, l2)

Furthermore, R contains four SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polynomial Ordering`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`

Dependency Pair:

EQ(s(x), s(y)) -> EQ(x, y)

Rules:

if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)

The following dependency pair can be strictly oriented:

EQ(s(x), s(y)) -> EQ(x, y)

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(EQ(x1, x2)) =  x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 5`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`

Dependency Pair:

Rules:

if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polynomial Ordering`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`

Dependency Pairs:

APP(app(l1, l2), l3) -> APP(l2, l3)
APP(app(l1, l2), l3) -> APP(l1, app(l2, l3))
APP(cons(x, l1), l2) -> APP(l1, l2)

Rules:

if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)

The following dependency pairs can be strictly oriented:

APP(app(l1, l2), l3) -> APP(l2, l3)
APP(app(l1, l2), l3) -> APP(l1, app(l2, l3))

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(cons(x1, x2)) =  x2 POL(nil) =  0 POL(app(x1, x2)) =  1 + x1 + x2 POL(APP(x1, x2)) =  x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`           →DP Problem 6`
`             ↳Polynomial Ordering`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`

Dependency Pair:

APP(cons(x, l1), l2) -> APP(l1, l2)

Rules:

if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)

The following dependency pair can be strictly oriented:

APP(cons(x, l1), l2) -> APP(l1, l2)

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(cons(x1, x2)) =  1 + x2 POL(APP(x1, x2)) =  x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`           →DP Problem 6`
`             ↳Polo`
`             ...`
`               →DP Problem 7`
`                 ↳Dependency Graph`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`

Dependency Pair:

Rules:

if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polynomial Ordering`
`       →DP Problem 4`
`         ↳Polo`

Dependency Pairs:

IFMEM(false, x, l) -> MEM(x, l)
MEM(x, cons(y, l)) -> IFMEM(eq(x, y), x, l)

Rules:

if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)

The following dependency pair can be strictly oriented:

MEM(x, cons(y, l)) -> IFMEM(eq(x, y), x, l)

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(MEM(x1, x2)) =  x2 POL(eq(x1, x2)) =  0 POL(0) =  0 POL(false) =  0 POL(cons(x1, x2)) =  1 + x2 POL(IFMEM(x1, x2, x3)) =  x3 POL(true) =  0 POL(s(x1)) =  0

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`           →DP Problem 8`
`             ↳Dependency Graph`
`       →DP Problem 4`
`         ↳Polo`

Dependency Pair:

IFMEM(false, x, l) -> MEM(x, l)

Rules:

if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polynomial Ordering`

Dependency Pairs:

IFINTER(false, x, l1, l2) -> INTER(l1, l2)
INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)
INTER(l1, app(l2, l3)) -> INTER(l1, l3)
INTER(l1, app(l2, l3)) -> INTER(l1, l2)
INTER(app(l1, l2), l3) -> INTER(l2, l3)
INTER(app(l1, l2), l3) -> INTER(l1, l3)

Rules:

if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)

The following dependency pairs can be strictly oriented:

INTER(l1, app(l2, l3)) -> INTER(l1, l3)
INTER(l1, app(l2, l3)) -> INTER(l1, l2)
INTER(app(l1, l2), l3) -> INTER(l2, l3)
INTER(app(l1, l2), l3) -> INTER(l1, l3)

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(mem(x1, x2)) =  0 POL(eq(x1, x2)) =  0 POL(0) =  0 POL(false) =  0 POL(cons(x1, x2)) =  x2 POL(ifmem(x1, x2, x3)) =  0 POL(nil) =  0 POL(true) =  0 POL(s(x1)) =  0 POL(IFINTER(x1, x2, x3, x4)) =  x3 + x4 POL(INTER(x1, x2)) =  x1 + x2 POL(app(x1, x2)) =  1 + x1 + x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`           →DP Problem 9`
`             ↳Polynomial Ordering`

Dependency Pairs:

IFINTER(false, x, l1, l2) -> INTER(l1, l2)
INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)

Rules:

if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)

The following dependency pairs can be strictly oriented:

INTER(l1, cons(x, l2)) -> IFINTER(mem(x, l1), x, l2, l1)
INTER(cons(x, l1), l2) -> IFINTER(mem(x, l2), x, l1, l2)

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(mem(x1, x2)) =  0 POL(eq(x1, x2)) =  0 POL(0) =  0 POL(false) =  0 POL(cons(x1, x2)) =  1 + x2 POL(ifmem(x1, x2, x3)) =  0 POL(nil) =  0 POL(true) =  0 POL(s(x1)) =  0 POL(IFINTER(x1, x2, x3, x4)) =  x3 + x4 POL(INTER(x1, x2)) =  x1 + x2

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Polo`
`       →DP Problem 4`
`         ↳Polo`
`           →DP Problem 9`
`             ↳Polo`
`             ...`
`               →DP Problem 10`
`                 ↳Dependency Graph`

Dependency Pairs:

IFINTER(false, x, l1, l2) -> INTER(l1, l2)
IFINTER(true, x, l1, l2) -> INTER(l1, l2)

Rules:

if(true, x, y) -> x
if(false, x, y) -> y
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
app(nil, l) -> l
app(cons(x, l1), l2) -> cons(x, app(l1, l2))
app(app(l1, l2), l3) -> app(l1, app(l2, l3))
mem(x, nil) -> false
mem(x, cons(y, l)) -> ifmem(eq(x, y), x, l)
ifmem(true, x, l) -> true
ifmem(false, x, l) -> mem(x, l)
inter(x, nil) -> nil
inter(nil, x) -> nil
inter(app(l1, l2), l3) -> app(inter(l1, l3), inter(l2, l3))
inter(l1, app(l2, l3)) -> app(inter(l1, l2), inter(l1, l3))
inter(cons(x, l1), l2) -> ifinter(mem(x, l2), x, l1, l2)
inter(l1, cons(x, l2)) -> ifinter(mem(x, l1), x, l2, l1)
ifinter(true, x, l1, l2) -> cons(x, inter(l1, l2))
ifinter(false, x, l1, l2) -> inter(l1, l2)

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes