R
↳Dependency Pair Analysis
FOLDB(t, s(n)) -> F(foldB(t, n), B)
FOLDB(t, s(n)) -> FOLDB(t, n)
FOLDC(t, s(n)) -> F(foldC(t, n), C)
FOLDC(t, s(n)) -> FOLDC(t, n)
F(t, x) -> F'(t, g(x))
F(t, x) -> G(x)
F'(triple(a, b, c), B) -> F(triple(a, b, c), A)
F'(triple(a, b, c), A) -> F''(foldB(triple(s(a), 0, c), b))
F'(triple(a, b, c), A) -> FOLDB(triple(s(a), 0, c), b)
F''(triple(a, b, c)) -> FOLDC(triple(a, b, 0), c)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
FOLDB(t, s(n)) -> FOLDB(t, n)
F'(triple(a, b, c), A) -> FOLDB(triple(s(a), 0, c), b)
FOLDC(t, s(n)) -> FOLDC(t, n)
FOLDC(t, s(n)) -> F(foldC(t, n), C)
F''(triple(a, b, c)) -> FOLDC(triple(a, b, 0), c)
F'(triple(a, b, c), A) -> F''(foldB(triple(s(a), 0, c), b))
F'(triple(a, b, c), B) -> F(triple(a, b, c), A)
F(t, x) -> F'(t, g(x))
FOLDB(t, s(n)) -> F(foldB(t, n), B)
g(A) -> A
g(B) -> A
g(B) -> B
g(C) -> A
g(C) -> B
g(C) -> C
foldB(t, 0) -> t
foldB(t, s(n)) -> f(foldB(t, n), B)
foldC(t, 0) -> t
foldC(t, s(n)) -> f(foldC(t, n), C)
f(t, x) -> f'(t, g(x))
f'(triple(a, b, c), C) -> triple(a, b, s(c))
f'(triple(a, b, c), B) -> f(triple(a, b, c), A)
f'(triple(a, b, c), A) -> f''(foldB(triple(s(a), 0, c), b))
f''(triple(a, b, c)) -> foldC(triple(a, b, 0), c)
FOLDB(t, s(n)) -> FOLDB(t, n)
FOLDC(t, s(n)) -> FOLDC(t, n)
FOLDC(t, s(n)) -> F(foldC(t, n), C)
FOLDB(t, s(n)) -> F(foldB(t, n), B)
foldC(t, 0) -> t
foldC(t, s(n)) -> f(foldC(t, n), C)
foldB(t, 0) -> t
foldB(t, s(n)) -> f(foldB(t, n), B)
g(A) -> A
g(B) -> A
g(B) -> B
g(C) -> A
g(C) -> B
g(C) -> C
f(t, x) -> f'(t, g(x))
f'(triple(a, b, c), C) -> triple(a, b, s(c))
f'(triple(a, b, c), B) -> f(triple(a, b, c), A)
f'(triple(a, b, c), A) -> f''(foldB(triple(s(a), 0, c), b))
f''(triple(a, b, c)) -> foldC(triple(a, b, 0), c)
POL(foldB(x1, x2)) = x1 + x2 POL(FOLDC(x1, x2)) = x1 + x2 POL(triple(x1, x2)) = x1 + x2 POL(f'(x1, x2)) = 1 + x1 + x2 POL(f(x1, x2)) = 1 + x1 + x2 POL(F(x1, x2)) = x1 + x2 POL(foldC(x1, x2)) = x1 + x2 POL(FOLDB(x1, x2)) = x1 + x2 POL(F''(x1)) = x1 POL(C) = 0 POL(0) = 0 POL(B) = 0 POL(g(x1)) = x1 POL(F'(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1 POL(f''(x1)) = x1 POL(A) = 0
FOLDC(x1, x2) -> FOLDC(x1, x2)
F(x1, x2) -> F(x1, x2)
s(x1) -> s(x1)
foldC(x1, x2) -> foldC(x1, x2)
FOLDB(x1, x2) -> FOLDB(x1, x2)
foldB(x1, x2) -> foldB(x1, x2)
F'(x1, x2) -> F'(x1, x2)
g(x1) -> g(x1)
triple(x1, x2, x3) -> triple(x2, x3)
F''(x1) -> F''(x1)
f(x1, x2) -> f(x1, x2)
f'(x1, x2) -> f'(x1, x2)
f''(x1) -> f''(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Dependency Graph
F'(triple(a, b, c), A) -> FOLDB(triple(s(a), 0, c), b)
F''(triple(a, b, c)) -> FOLDC(triple(a, b, 0), c)
F'(triple(a, b, c), A) -> F''(foldB(triple(s(a), 0, c), b))
F'(triple(a, b, c), B) -> F(triple(a, b, c), A)
F(t, x) -> F'(t, g(x))
g(A) -> A
g(B) -> A
g(B) -> B
g(C) -> A
g(C) -> B
g(C) -> C
foldB(t, 0) -> t
foldB(t, s(n)) -> f(foldB(t, n), B)
foldC(t, 0) -> t
foldC(t, s(n)) -> f(foldC(t, n), C)
f(t, x) -> f'(t, g(x))
f'(triple(a, b, c), C) -> triple(a, b, s(c))
f'(triple(a, b, c), B) -> f(triple(a, b, c), A)
f'(triple(a, b, c), A) -> f''(foldB(triple(s(a), 0, c), b))
f''(triple(a, b, c)) -> foldC(triple(a, b, 0), c)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Narrowing Transformation
F(t, x) -> F'(t, g(x))
F'(triple(a, b, c), B) -> F(triple(a, b, c), A)
g(A) -> A
g(B) -> A
g(B) -> B
g(C) -> A
g(C) -> B
g(C) -> C
foldB(t, 0) -> t
foldB(t, s(n)) -> f(foldB(t, n), B)
foldC(t, 0) -> t
foldC(t, s(n)) -> f(foldC(t, n), C)
f(t, x) -> f'(t, g(x))
f'(triple(a, b, c), C) -> triple(a, b, s(c))
f'(triple(a, b, c), B) -> f(triple(a, b, c), A)
f'(triple(a, b, c), A) -> f''(foldB(triple(s(a), 0, c), b))
f''(triple(a, b, c)) -> foldC(triple(a, b, 0), c)
six new Dependency Pairs are created:
F(t, x) -> F'(t, g(x))
F(t, A) -> F'(t, A)
F(t, B) -> F'(t, A)
F(t, B) -> F'(t, B)
F(t, C) -> F'(t, A)
F(t, C) -> F'(t, B)
F(t, C) -> F'(t, C)