R
↳Dependency Pair Analysis
ACKIN(s(m), 0) -> U11(ackin(m, s(0)))
ACKIN(s(m), 0) -> ACKIN(m, s(0))
ACKIN(s(m), s(n)) -> U21(ackin(s(m), n), m)
ACKIN(s(m), s(n)) -> ACKIN(s(m), n)
U21(ackout(n), m) -> U22(ackin(m, n))
U21(ackout(n), m) -> ACKIN(m, n)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
ACKIN(s(m), s(n)) -> ACKIN(s(m), n)
U21(ackout(n), m) -> ACKIN(m, n)
ACKIN(s(m), s(n)) -> U21(ackin(s(m), n), m)
ACKIN(s(m), 0) -> ACKIN(m, s(0))
ackin(0, n) -> ackout(s(n))
ackin(s(m), 0) -> u11(ackin(m, s(0)))
ackin(s(m), s(n)) -> u21(ackin(s(m), n), m)
u11(ackout(n)) -> ackout(n)
u21(ackout(n), m) -> u22(ackin(m, n))
u22(ackout(n)) -> ackout(n)
ACKIN(s(m), s(n)) -> U21(ackin(s(m), n), m)
ACKIN(s(m), 0) -> ACKIN(m, s(0))
POL(ack_in(x1, x2)) = 0 POL(0) = 0 POL(u11(x1)) = 0 POL(u22(x1)) = 0 POL(ACK_IN(x1, x2)) = x1 POL(U21(x1, x2)) = x2 POL(ack_out(x1)) = 0 POL(u21(x1, x2)) = 0 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Dependency Graph
ACKIN(s(m), s(n)) -> ACKIN(s(m), n)
U21(ackout(n), m) -> ACKIN(m, n)
ackin(0, n) -> ackout(s(n))
ackin(s(m), 0) -> u11(ackin(m, s(0)))
ackin(s(m), s(n)) -> u21(ackin(s(m), n), m)
u11(ackout(n)) -> ackout(n)
u21(ackout(n), m) -> u22(ackin(m, n))
u22(ackout(n)) -> ackout(n)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 3
↳Forward Instantiation Transformation
ACKIN(s(m), s(n)) -> ACKIN(s(m), n)
ackin(0, n) -> ackout(s(n))
ackin(s(m), 0) -> u11(ackin(m, s(0)))
ackin(s(m), s(n)) -> u21(ackin(s(m), n), m)
u11(ackout(n)) -> ackout(n)
u21(ackout(n), m) -> u22(ackin(m, n))
u22(ackout(n)) -> ackout(n)
one new Dependency Pair is created:
ACKIN(s(m), s(n)) -> ACKIN(s(m), n)
ACKIN(s(m''), s(s(n''))) -> ACKIN(s(m''), s(n''))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 4
↳Forward Instantiation Transformation
ACKIN(s(m''), s(s(n''))) -> ACKIN(s(m''), s(n''))
ackin(0, n) -> ackout(s(n))
ackin(s(m), 0) -> u11(ackin(m, s(0)))
ackin(s(m), s(n)) -> u21(ackin(s(m), n), m)
u11(ackout(n)) -> ackout(n)
u21(ackout(n), m) -> u22(ackin(m, n))
u22(ackout(n)) -> ackout(n)
one new Dependency Pair is created:
ACKIN(s(m''), s(s(n''))) -> ACKIN(s(m''), s(n''))
ACKIN(s(m''''), s(s(s(n'''')))) -> ACKIN(s(m''''), s(s(n'''')))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 5
↳Polynomial Ordering
ACKIN(s(m''''), s(s(s(n'''')))) -> ACKIN(s(m''''), s(s(n'''')))
ackin(0, n) -> ackout(s(n))
ackin(s(m), 0) -> u11(ackin(m, s(0)))
ackin(s(m), s(n)) -> u21(ackin(s(m), n), m)
u11(ackout(n)) -> ackout(n)
u21(ackout(n), m) -> u22(ackin(m, n))
u22(ackout(n)) -> ackout(n)
ACKIN(s(m''''), s(s(s(n'''')))) -> ACKIN(s(m''''), s(s(n'''')))
POL(ACK_IN(x1, x2)) = 1 + x2 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳DGraph
...
→DP Problem 6
↳Dependency Graph
ackin(0, n) -> ackout(s(n))
ackin(s(m), 0) -> u11(ackin(m, s(0)))
ackin(s(m), s(n)) -> u21(ackin(s(m), n), m)
u11(ackout(n)) -> ackout(n)
u21(ackout(n), m) -> u22(ackin(m, n))
u22(ackout(n)) -> ackout(n)