f(a,

h(g(

h(h(

g(h(

R

↳Dependency Pair Analysis

F(a,x) -> F(g(x),x)

F(a,x) -> G(x)

H(g(x)) -> H(a)

G(h(x)) -> G(x)

Furthermore,

R

↳DPs

→DP Problem 1

↳Argument Filtering and Ordering

→DP Problem 2

↳AFS

**G(h( x)) -> G(x)**

f(a,x) -> f(g(x),x)

h(g(x)) -> h(a)

h(h(x)) ->x

g(h(x)) -> g(x)

The following dependency pair can be strictly oriented:

G(h(x)) -> G(x)

There are no usable rules using the Ce-refinement that need to be oriented.

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:

trivial

resulting in one new DP problem.

Used Argument Filtering System:

G(x) -> G(_{1}x)_{1}

h(x) -> h(_{1}x)_{1}

R

↳DPs

→DP Problem 1

↳AFS

→DP Problem 3

↳Dependency Graph

→DP Problem 2

↳AFS

f(a,x) -> f(g(x),x)

h(g(x)) -> h(a)

h(h(x)) ->x

g(h(x)) -> g(x)

Using the Dependency Graph resulted in no new DP problems.

R

↳DPs

→DP Problem 1

↳AFS

→DP Problem 2

↳Argument Filtering and Ordering

**F(a, x) -> F(g(x), x)**

f(a,x) -> f(g(x),x)

h(g(x)) -> h(a)

h(h(x)) ->x

g(h(x)) -> g(x)

The following dependency pair can be strictly oriented:

F(a,x) -> F(g(x),x)

The following usable rule using the Ce-refinement can be oriented:

g(h(x)) -> g(x)

Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:

a > g

resulting in one new DP problem.

Used Argument Filtering System:

F(x,_{1}x) -> F(_{2}x,_{1}x)_{2}

g(x) -> g_{1}

R

↳DPs

→DP Problem 1

↳AFS

→DP Problem 2

↳AFS

→DP Problem 4

↳Dependency Graph

f(a,x) -> f(g(x),x)

h(g(x)) -> h(a)

h(h(x)) ->x

g(h(x)) -> g(x)

Using the Dependency Graph resulted in no new DP problems.

Duration:

0:00 minutes