Term Rewriting System R:
[x, y]
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
times(0, y) -> 0
times(x, 0) -> 0
times(s(x), y) -> plus(times(x, y), y)
p(s(s(x))) -> s(p(s(x)))
p(s(0)) -> 0
fac(s(x)) -> times(fac(p(s(x))), s(x))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

PLUS(x, s(y)) -> PLUS(x, y)
TIMES(s(x), y) -> PLUS(times(x, y), y)
TIMES(s(x), y) -> TIMES(x, y)
P(s(s(x))) -> P(s(x))
FAC(s(x)) -> TIMES(fac(p(s(x))), s(x))
FAC(s(x)) -> FAC(p(s(x)))
FAC(s(x)) -> P(s(x))

Furthermore, R contains four SCCs.


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)
       →DP Problem 4
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)
       →DP Problem 4
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)
       →DP Problem 4
Remaining Obligation(s)




The following remains to be proven:


   R
DPs
       →DP Problem 1
Remaining Obligation(s)
       →DP Problem 2
Remaining Obligation(s)
       →DP Problem 3
Remaining Obligation(s)
       →DP Problem 4
Remaining Obligation(s)




The following remains to be proven:

Termination of R could not be shown.
Duration:
0:01 minutes