Term Rewriting System R:
[x, y]
top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

TOP1(free(x), y) -> TOP2(check(new(x)), y)
TOP1(free(x), y) -> CHECK(new(x))
TOP1(free(x), y) -> NEW(x)
TOP1(free(x), y) -> TOP2(new(x), check(y))
TOP1(free(x), y) -> CHECK(y)
TOP1(free(x), y) -> TOP2(check(x), new(y))
TOP1(free(x), y) -> CHECK(x)
TOP1(free(x), y) -> NEW(y)
TOP1(free(x), y) -> TOP2(x, check(new(y)))
TOP1(free(x), y) -> CHECK(new(y))
TOP2(x, free(y)) -> TOP1(check(new(x)), y)
TOP2(x, free(y)) -> CHECK(new(x))
TOP2(x, free(y)) -> NEW(x)
TOP2(x, free(y)) -> TOP1(new(x), check(y))
TOP2(x, free(y)) -> CHECK(y)
TOP2(x, free(y)) -> TOP1(check(x), new(y))
TOP2(x, free(y)) -> CHECK(x)
TOP2(x, free(y)) -> NEW(y)
TOP2(x, free(y)) -> TOP1(x, check(new(y)))
TOP2(x, free(y)) -> CHECK(new(y))
NEW(free(x)) -> NEW(x)
OLD(free(x)) -> OLD(x)
CHECK(free(x)) -> CHECK(x)
CHECK(new(x)) -> NEW(check(x))
CHECK(new(x)) -> CHECK(x)
CHECK(old(x)) -> OLD(check(x))
CHECK(old(x)) -> CHECK(x)

Furthermore, R contains four SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Remaining


Dependency Pair:

NEW(free(x)) -> NEW(x)


Rules:


top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)





The following dependency pair can be strictly oriented:

NEW(free(x)) -> NEW(x)


Additionally, the following rules can be oriented:

top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(serve)=  0  
  POL(top1(x1, x2))=  0  
  POL(old(x1))=  1 + x1  
  POL(free(x1))=  1 + x1  
  POL(check(x1))=  x1  
  POL(NEW(x1))=  1 + x1  
  POL(top2(x1, x2))=  0  
  POL(new(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 5
Dependency Graph
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Remaining


Dependency Pair:


Rules:


top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Remaining


Dependency Pair:

OLD(free(x)) -> OLD(x)


Rules:


top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)





The following dependency pair can be strictly oriented:

OLD(free(x)) -> OLD(x)


Additionally, the following rules can be oriented:

top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(serve)=  0  
  POL(top1(x1, x2))=  0  
  POL(old(x1))=  1 + x1  
  POL(free(x1))=  1 + x1  
  POL(check(x1))=  x1  
  POL(OLD(x1))=  1 + x1  
  POL(top2(x1, x2))=  0  
  POL(new(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 6
Dependency Graph
       →DP Problem 3
Polo
       →DP Problem 4
Remaining


Dependency Pair:


Rules:


top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polynomial Ordering
       →DP Problem 4
Remaining


Dependency Pairs:

CHECK(old(x)) -> CHECK(x)
CHECK(new(x)) -> CHECK(x)
CHECK(free(x)) -> CHECK(x)


Rules:


top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)





The following dependency pair can be strictly oriented:

CHECK(old(x)) -> CHECK(x)


Additionally, the following rules can be oriented:

top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(serve)=  0  
  POL(top1(x1, x2))=  0  
  POL(old(x1))=  1 + x1  
  POL(free(x1))=  x1  
  POL(check(x1))=  x1  
  POL(CHECK(x1))=  x1  
  POL(top2(x1, x2))=  0  
  POL(new(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 7
Polynomial Ordering
       →DP Problem 4
Remaining


Dependency Pairs:

CHECK(new(x)) -> CHECK(x)
CHECK(free(x)) -> CHECK(x)


Rules:


top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)





The following dependency pair can be strictly oriented:

CHECK(new(x)) -> CHECK(x)


Additionally, the following rules can be oriented:

top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(serve)=  0  
  POL(top1(x1, x2))=  0  
  POL(old(x1))=  0  
  POL(free(x1))=  x1  
  POL(check(x1))=  x1  
  POL(CHECK(x1))=  1 + x1  
  POL(top2(x1, x2))=  0  
  POL(new(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 7
Polo
             ...
               →DP Problem 8
Polynomial Ordering
       →DP Problem 4
Remaining


Dependency Pair:

CHECK(free(x)) -> CHECK(x)


Rules:


top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)





The following dependency pair can be strictly oriented:

CHECK(free(x)) -> CHECK(x)


Additionally, the following rules can be oriented:

top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(serve)=  0  
  POL(top1(x1, x2))=  0  
  POL(old(x1))=  1 + x1  
  POL(free(x1))=  1 + x1  
  POL(check(x1))=  x1  
  POL(CHECK(x1))=  1 + x1  
  POL(top2(x1, x2))=  0  
  POL(new(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 7
Polo
             ...
               →DP Problem 9
Dependency Graph
       →DP Problem 4
Remaining


Dependency Pair:


Rules:


top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

TOP2(x, free(y)) -> TOP1(x, check(new(y)))
TOP1(free(x), y) -> TOP2(x, check(new(y)))
TOP2(x, free(y)) -> TOP1(check(x), new(y))
TOP1(free(x), y) -> TOP2(check(x), new(y))
TOP2(x, free(y)) -> TOP1(new(x), check(y))
TOP1(free(x), y) -> TOP2(new(x), check(y))
TOP2(x, free(y)) -> TOP1(check(new(x)), y)
TOP1(free(x), y) -> TOP2(check(new(x)), y)


Rules:


top1(free(x), y) -> top2(check(new(x)), y)
top1(free(x), y) -> top2(new(x), check(y))
top1(free(x), y) -> top2(check(x), new(y))
top1(free(x), y) -> top2(x, check(new(y)))
top2(x, free(y)) -> top1(check(new(x)), y)
top2(x, free(y)) -> top1(new(x), check(y))
top2(x, free(y)) -> top1(check(x), new(y))
top2(x, free(y)) -> top1(x, check(new(y)))
new(free(x)) -> free(new(x))
new(serve) -> free(serve)
old(free(x)) -> free(old(x))
old(serve) -> free(serve)
check(free(x)) -> free(check(x))
check(new(x)) -> new(check(x))
check(old(x)) -> old(check(x))
check(old(x)) -> old(x)




Termination of R could not be shown.
Duration:
0:01 minutes