TRS
↳Removing Redundant Rules
rec(no(x)) -> sent(rec(x))
top(no(up(x))) -> top(check(rec(x)))
was used.
POL(top(x1)) = 1 + x1 POL(rec(x1)) = x1 POL(no(x1)) = 1 + x1 POL(bot) = 0 POL(up(x1)) = x1 POL(check(x1)) = x1 POL(sent(x1)) = x1
TRS
↳RRRPolo
→TRS2
↳Removing Redundant Rules
rec(rec(x)) -> sent(rec(x))
top(rec(up(x))) -> top(check(rec(x)))
was used.
POL(top(x1)) = 1 + x1 POL(rec(x1)) = 1 + x1 POL(bot) = 0 POL(no(x1)) = x1 POL(up(x1)) = 1 + x1 POL(check(x1)) = x1 POL(sent(x1)) = x1
TRS
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳Removing Redundant Rules
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
was used.
POL(top(x1)) = x1 POL(rec(x1)) = x1 POL(bot) = 0 POL(no(x1)) = 1 + x1 POL(up(x1)) = x1 POL(check(x1)) = 2·x1 POL(sent(x1)) = 2·x1
TRS
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→TRS4
↳Removing Redundant Rules
no(up(x)) -> up(no(x))
was used.
POL(top(x1)) = 1 + x1 POL(rec(x1)) = 1 + x1 POL(bot) = 0 POL(no(x1)) = 2·x1 POL(up(x1)) = 1 + x1 POL(check(x1)) = x1 POL(sent(x1)) = x1
TRS
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→TRS5
↳Dependency Pair Analysis
SENT(up(x)) -> SENT(x)
REC(bot) -> SENT(bot)
REC(up(x)) -> REC(x)
REC(sent(x)) -> SENT(rec(x))
REC(sent(x)) -> REC(x)
CHECK(rec(x)) -> REC(check(x))
CHECK(rec(x)) -> CHECK(x)
CHECK(up(x)) -> CHECK(x)
CHECK(sent(x)) -> SENT(check(x))
CHECK(sent(x)) -> CHECK(x)
TOP(sent(up(x))) -> TOP(check(rec(x)))
TOP(sent(up(x))) -> CHECK(rec(x))
TOP(sent(up(x))) -> REC(x)
TRS
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 1
↳Modular Removal of Rules
SENT(up(x)) -> SENT(x)
sent(up(x)) -> up(sent(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
rec(sent(x)) -> sent(rec(x))
check(rec(x)) -> rec(check(x))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
top(sent(up(x))) -> top(check(rec(x)))
POL(up(x1)) = x1 POL(SENT(x1)) = x1
SENT(up(x)) -> SENT(x)
TRS
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 2
↳Modular Removal of Rules
REC(sent(x)) -> REC(x)
REC(up(x)) -> REC(x)
sent(up(x)) -> up(sent(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
rec(sent(x)) -> sent(rec(x))
check(rec(x)) -> rec(check(x))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
top(sent(up(x))) -> top(check(rec(x)))
POL(up(x1)) = x1 POL(REC(x1)) = x1 POL(sent(x1)) = x1
REC(sent(x)) -> REC(x)
REC(up(x)) -> REC(x)
TRS
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 3
↳Modular Removal of Rules
CHECK(sent(x)) -> CHECK(x)
CHECK(up(x)) -> CHECK(x)
CHECK(rec(x)) -> CHECK(x)
sent(up(x)) -> up(sent(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
rec(sent(x)) -> sent(rec(x))
check(rec(x)) -> rec(check(x))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
top(sent(up(x))) -> top(check(rec(x)))
POL(rec(x1)) = x1 POL(up(x1)) = x1 POL(CHECK(x1)) = x1 POL(sent(x1)) = x1
CHECK(sent(x)) -> CHECK(x)
CHECK(up(x)) -> CHECK(x)
CHECK(rec(x)) -> CHECK(x)
TRS
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 4
↳Modular Removal of Rules
TOP(sent(up(x))) -> TOP(check(rec(x)))
sent(up(x)) -> up(sent(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
rec(sent(x)) -> sent(rec(x))
check(rec(x)) -> rec(check(x))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
top(sent(up(x))) -> top(check(rec(x)))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
check(rec(x)) -> rec(check(x))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
rec(sent(x)) -> sent(rec(x))
sent(up(x)) -> up(sent(x))
POL(rec(x1)) = x1 POL(bot) = 0 POL(up(x1)) = x1 POL(check(x1)) = x1 POL(TOP(x1)) = 1 + x1 POL(sent(x1)) = x1
TRS
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 5
↳Narrowing Transformation
TOP(sent(up(x))) -> TOP(check(rec(x)))
check(rec(x)) -> rec(check(x))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
rec(sent(x)) -> sent(rec(x))
sent(up(x)) -> up(sent(x))
four new Dependency Pairs are created:
TOP(sent(up(x))) -> TOP(check(rec(x)))
TOP(sent(up(x''))) -> TOP(rec(check(x'')))
TOP(sent(up(bot))) -> TOP(check(up(sent(bot))))
TOP(sent(up(up(x'')))) -> TOP(check(up(rec(x''))))
TOP(sent(up(sent(x'')))) -> TOP(check(sent(rec(x''))))
TRS
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 6
↳Negative Polynomial Order
TOP(sent(up(sent(x'')))) -> TOP(check(sent(rec(x''))))
TOP(sent(up(up(x'')))) -> TOP(check(up(rec(x''))))
TOP(sent(up(x''))) -> TOP(rec(check(x'')))
check(rec(x)) -> rec(check(x))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
rec(sent(x)) -> sent(rec(x))
sent(up(x)) -> up(sent(x))
TOP(sent(up(up(x'')))) -> TOP(check(up(rec(x''))))
check(rec(x)) -> rec(check(x))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
rec(sent(x)) -> sent(rec(x))
sent(up(x)) -> up(sent(x))
POL( TOP(x1) ) = x1
POL( sent(x1) ) = 1
POL( check(x1) ) = x1
POL( up(x1) ) = 0
POL( rec(x1) ) = 1
TRS
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 7
↳Semantic Labelling
TOP(sent(up(sent(x'')))) -> TOP(check(sent(rec(x''))))
TOP(sent(up(x''))) -> TOP(rec(check(x'')))
check(rec(x)) -> rec(check(x))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
rec(sent(x)) -> sent(rec(x))
sent(up(x)) -> up(sent(x))
TOP(x0) = 0 sent(x0) = x0 up(x0) = x0 rec(x0) = x0 check(x0) = 1 bot = 0
TRS
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 8
↳Modular Removal of Rules
TOP1(sent1(up1(x''))) -> TOP1(rec1(check1(x'')))
TOP1(sent1(up1(sent1(x'')))) -> TOP1(check1(sent1(rec1(x''))))
check0(rec0(x)) -> rec1(check0(x))
check0(up0(x)) -> up1(check0(x))
check0(sent0(x)) -> sent1(check0(x))
rec0(bot) -> up0(sent0(bot))
rec0(up0(x)) -> up0(rec0(x))
rec0(sent0(x)) -> sent0(rec0(x))
rec1(up1(x)) -> up1(rec1(x))
rec1(sent1(x)) -> sent1(rec1(x))
check1(rec1(x)) -> rec1(check1(x))
check1(up1(x)) -> up1(check1(x))
check1(sent1(x)) -> sent1(check1(x))
sent0(up0(x)) -> up0(sent0(x))
sent1(up1(x)) -> up1(sent1(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
rec1(up1(x)) -> up1(rec1(x))
rec1(sent1(x)) -> sent1(rec1(x))
check1(rec1(x)) -> rec1(check1(x))
check1(up1(x)) -> up1(check1(x))
check1(sent1(x)) -> sent1(check1(x))
sent1(up1(x)) -> up1(sent1(x))
POL(rec_1(x1)) = x1 POL(up_1(x1)) = x1 POL(sent_1(x1)) = x1 POL(check_1(x1)) = x1 POL(TOP_1(x1)) = 1 + x1
TRS
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→DP Problem 9
↳Modular Removal of Rules
TOP1(sent1(up1(sent1(x'')))) -> TOP1(check1(sent1(rec1(x''))))
TOP1(sent1(up1(x''))) -> TOP1(rec1(check1(x'')))
rec1(up1(x)) -> up1(rec1(x))
rec1(sent1(x)) -> sent1(rec1(x))
sent1(up1(x)) -> up1(sent1(x))
check1(rec1(x)) -> rec1(check1(x))
check1(up1(x)) -> up1(check1(x))
check1(sent1(x)) -> sent1(check1(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
check1(rec1(x)) -> rec1(check1(x))
check1(up1(x)) -> up1(check1(x))
check1(sent1(x)) -> sent1(check1(x))
rec1(up1(x)) -> up1(rec1(x))
rec1(sent1(x)) -> sent1(rec1(x))
sent1(up1(x)) -> up1(sent1(x))
POL(rec_1(x1)) = x1 POL(up_1(x1)) = 1 + x1 POL(sent_1(x1)) = x1 POL(check_1(x1)) = x1 POL(TOP_1(x1)) = 1 + x1
TOP1(sent1(up1(sent1(x'')))) -> TOP1(check1(sent1(rec1(x''))))
TOP1(sent1(up1(x''))) -> TOP1(rec1(check1(x'')))
Termination of R successfully shown.
Duration:
0:17 minutes