Term Rewriting System R:
[x]
rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

REC(rec(x)) -> SENT(rec(x))
REC(sent(x)) -> SENT(rec(x))
REC(sent(x)) -> REC(x)
REC(no(x)) -> SENT(rec(x))
REC(no(x)) -> REC(x)
REC(bot) -> SENT(bot)
REC(up(x)) -> REC(x)
SENT(up(x)) -> SENT(x)
NO(up(x)) -> NO(x)
TOP(rec(up(x))) -> TOP(check(rec(x)))
TOP(rec(up(x))) -> CHECK(rec(x))
TOP(rec(up(x))) -> REC(x)
TOP(sent(up(x))) -> TOP(check(rec(x)))
TOP(sent(up(x))) -> CHECK(rec(x))
TOP(sent(up(x))) -> REC(x)
TOP(no(up(x))) -> TOP(check(rec(x)))
TOP(no(up(x))) -> CHECK(rec(x))
TOP(no(up(x))) -> REC(x)
CHECK(up(x)) -> CHECK(x)
CHECK(sent(x)) -> SENT(check(x))
CHECK(sent(x)) -> CHECK(x)
CHECK(rec(x)) -> REC(check(x))
CHECK(rec(x)) -> CHECK(x)
CHECK(no(x)) -> NO(check(x))
CHECK(no(x)) -> CHECK(x)

Furthermore, R contains five SCCs.


   R
DPs
       →DP Problem 1
Polynomial Ordering
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pair:

SENT(up(x)) -> SENT(x)


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





The following dependency pair can be strictly oriented:

SENT(up(x)) -> SENT(x)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(up(x1))=  1 + x1  
  POL(SENT(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 6
Dependency Graph
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pair:


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polynomial Ordering
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pair:

NO(up(x)) -> NO(x)


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





The following dependency pair can be strictly oriented:

NO(up(x)) -> NO(x)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(NO(x1))=  x1  
  POL(up(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
           →DP Problem 7
Dependency Graph
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pair:


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pairs:

REC(up(x)) -> REC(x)
REC(no(x)) -> REC(x)
REC(sent(x)) -> REC(x)


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





The following dependency pair can be strictly oriented:

REC(up(x)) -> REC(x)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(no(x1))=  x1  
  POL(up(x1))=  1 + x1  
  POL(REC(x1))=  x1  
  POL(sent(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 8
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pairs:

REC(no(x)) -> REC(x)
REC(sent(x)) -> REC(x)


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





The following dependency pair can be strictly oriented:

REC(no(x)) -> REC(x)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(no(x1))=  1 + x1  
  POL(REC(x1))=  x1  
  POL(sent(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 8
Polo
             ...
               →DP Problem 9
Polynomial Ordering
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pair:

REC(sent(x)) -> REC(x)


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





The following dependency pair can be strictly oriented:

REC(sent(x)) -> REC(x)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(REC(x1))=  x1  
  POL(sent(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
           →DP Problem 8
Polo
             ...
               →DP Problem 10
Dependency Graph
       →DP Problem 4
Polo
       →DP Problem 5
Polo


Dependency Pair:


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polynomial Ordering
       →DP Problem 5
Polo


Dependency Pairs:

CHECK(no(x)) -> CHECK(x)
CHECK(rec(x)) -> CHECK(x)
CHECK(sent(x)) -> CHECK(x)
CHECK(up(x)) -> CHECK(x)


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





The following dependency pair can be strictly oriented:

CHECK(no(x)) -> CHECK(x)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(no(x1))=  1 + x1  
  POL(rec(x1))=  x1  
  POL(up(x1))=  x1  
  POL(CHECK(x1))=  x1  
  POL(sent(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 11
Polynomial Ordering
       →DP Problem 5
Polo


Dependency Pairs:

CHECK(rec(x)) -> CHECK(x)
CHECK(sent(x)) -> CHECK(x)
CHECK(up(x)) -> CHECK(x)


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





The following dependency pair can be strictly oriented:

CHECK(rec(x)) -> CHECK(x)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(rec(x1))=  1 + x1  
  POL(up(x1))=  x1  
  POL(CHECK(x1))=  x1  
  POL(sent(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 11
Polo
             ...
               →DP Problem 12
Polynomial Ordering
       →DP Problem 5
Polo


Dependency Pairs:

CHECK(sent(x)) -> CHECK(x)
CHECK(up(x)) -> CHECK(x)


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





The following dependency pair can be strictly oriented:

CHECK(sent(x)) -> CHECK(x)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(up(x1))=  x1  
  POL(CHECK(x1))=  x1  
  POL(sent(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 11
Polo
             ...
               →DP Problem 13
Polynomial Ordering
       →DP Problem 5
Polo


Dependency Pair:

CHECK(up(x)) -> CHECK(x)


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





The following dependency pair can be strictly oriented:

CHECK(up(x)) -> CHECK(x)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(up(x1))=  1 + x1  
  POL(CHECK(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
           →DP Problem 11
Polo
             ...
               →DP Problem 14
Dependency Graph
       →DP Problem 5
Polo


Dependency Pair:


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polynomial Ordering


Dependency Pairs:

TOP(no(up(x))) -> TOP(check(rec(x)))
TOP(sent(up(x))) -> TOP(check(rec(x)))
TOP(rec(up(x))) -> TOP(check(rec(x)))


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





The following dependency pair can be strictly oriented:

TOP(no(up(x))) -> TOP(check(rec(x)))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(rec(x1))=  0  
  POL(no(x1))=  1  
  POL(bot)=  0  
  POL(up(x1))=  0  
  POL(check(x1))=  x1  
  POL(TOP(x1))=  x1  
  POL(sent(x1))=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 15
Polynomial Ordering


Dependency Pairs:

TOP(sent(up(x))) -> TOP(check(rec(x)))
TOP(rec(up(x))) -> TOP(check(rec(x)))


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





The following dependency pair can be strictly oriented:

TOP(rec(up(x))) -> TOP(check(rec(x)))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(rec(x1))=  1 + x1  
  POL(no(x1))=  x1  
  POL(bot)=  0  
  POL(up(x1))=  1 + x1  
  POL(check(x1))=  x1  
  POL(TOP(x1))=  1 + x1  
  POL(sent(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 15
Polo
             ...
               →DP Problem 16
Narrowing Transformation


Dependency Pair:

TOP(sent(up(x))) -> TOP(check(rec(x)))


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

TOP(sent(up(x))) -> TOP(check(rec(x)))
six new Dependency Pairs are created:

TOP(sent(up(x''))) -> TOP(rec(check(x'')))
TOP(sent(up(rec(x'')))) -> TOP(check(sent(rec(x''))))
TOP(sent(up(sent(x'')))) -> TOP(check(sent(rec(x''))))
TOP(sent(up(no(x'')))) -> TOP(check(sent(rec(x''))))
TOP(sent(up(bot))) -> TOP(check(up(sent(bot))))
TOP(sent(up(up(x'')))) -> TOP(check(up(rec(x''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 15
Polo
             ...
               →DP Problem 17
Polynomial Ordering


Dependency Pairs:

TOP(sent(up(up(x'')))) -> TOP(check(up(rec(x''))))
TOP(sent(up(bot))) -> TOP(check(up(sent(bot))))
TOP(sent(up(no(x'')))) -> TOP(check(sent(rec(x''))))
TOP(sent(up(sent(x'')))) -> TOP(check(sent(rec(x''))))
TOP(sent(up(rec(x'')))) -> TOP(check(sent(rec(x''))))
TOP(sent(up(x''))) -> TOP(rec(check(x'')))


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





The following dependency pairs can be strictly oriented:

TOP(sent(up(up(x'')))) -> TOP(check(up(rec(x''))))
TOP(sent(up(bot))) -> TOP(check(up(sent(bot))))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(rec(x1))=  1  
  POL(no(x1))=  0  
  POL(bot)=  0  
  POL(up(x1))=  0  
  POL(check(x1))=  x1  
  POL(TOP(x1))=  x1  
  POL(sent(x1))=  1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 15
Polo
             ...
               →DP Problem 18
Polynomial Ordering


Dependency Pairs:

TOP(sent(up(no(x'')))) -> TOP(check(sent(rec(x''))))
TOP(sent(up(sent(x'')))) -> TOP(check(sent(rec(x''))))
TOP(sent(up(rec(x'')))) -> TOP(check(sent(rec(x''))))
TOP(sent(up(x''))) -> TOP(rec(check(x'')))


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





The following dependency pair can be strictly oriented:

TOP(sent(up(no(x'')))) -> TOP(check(sent(rec(x''))))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(rec(x1))=  0  
  POL(no(x1))=  1  
  POL(bot)=  0  
  POL(up(x1))=  x1  
  POL(check(x1))=  x1  
  POL(TOP(x1))=  1 + x1  
  POL(sent(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 15
Polo
             ...
               →DP Problem 19
Polynomial Ordering


Dependency Pairs:

TOP(sent(up(sent(x'')))) -> TOP(check(sent(rec(x''))))
TOP(sent(up(rec(x'')))) -> TOP(check(sent(rec(x''))))
TOP(sent(up(x''))) -> TOP(rec(check(x'')))


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)





The following dependency pair can be strictly oriented:

TOP(sent(up(rec(x'')))) -> TOP(check(sent(rec(x''))))


Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(rec(x1))=  1 + x1  
  POL(no(x1))=  x1  
  POL(bot)=  0  
  POL(up(x1))=  1 + x1  
  POL(check(x1))=  x1  
  POL(TOP(x1))=  1 + x1  
  POL(sent(x1))=  x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
       →DP Problem 2
Polo
       →DP Problem 3
Polo
       →DP Problem 4
Polo
       →DP Problem 5
Polo
           →DP Problem 15
Polo
             ...
               →DP Problem 20
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

TOP(sent(up(sent(x'')))) -> TOP(check(sent(rec(x''))))
TOP(sent(up(x''))) -> TOP(rec(check(x'')))


Rules:


rec(rec(x)) -> sent(rec(x))
rec(sent(x)) -> sent(rec(x))
rec(no(x)) -> sent(rec(x))
rec(bot) -> up(sent(bot))
rec(up(x)) -> up(rec(x))
sent(up(x)) -> up(sent(x))
no(up(x)) -> up(no(x))
top(rec(up(x))) -> top(check(rec(x)))
top(sent(up(x))) -> top(check(rec(x)))
top(no(up(x))) -> top(check(rec(x)))
check(up(x)) -> up(check(x))
check(sent(x)) -> sent(check(x))
check(rec(x)) -> rec(check(x))
check(no(x)) -> no(check(x))
check(no(x)) -> no(x)




Termination of R could not be shown.
Duration:
0:01 minutes