R
↳Dependency Pair Analysis
ACTIVE(f(b, c, x)) -> F(x, x, x)
ACTIVE(f(x, y, z)) -> F(x, y, active(z))
ACTIVE(f(x, y, z)) -> ACTIVE(z)
F(x, y, mark(z)) -> F(x, y, z)
F(ok(x), ok(y), ok(z)) -> F(x, y, z)
PROPER(f(x, y, z)) -> F(proper(x), proper(y), proper(z))
PROPER(f(x, y, z)) -> PROPER(x)
PROPER(f(x, y, z)) -> PROPER(y)
PROPER(f(x, y, z)) -> PROPER(z)
TOP(mark(x)) -> TOP(proper(x))
TOP(mark(x)) -> PROPER(x)
TOP(ok(x)) -> TOP(active(x))
TOP(ok(x)) -> ACTIVE(x)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Remaining
F(ok(x), ok(y), ok(z)) -> F(x, y, z)
F(x, y, mark(z)) -> F(x, y, z)
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
F(ok(x), ok(y), ok(z)) -> F(x, y, z)
POL(mark(x1)) = 0 POL(ok(x1)) = 1 + x1 POL(F(x1, x2, x3)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 5
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Remaining
F(x, y, mark(z)) -> F(x, y, z)
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
F(x, y, mark(z)) -> F(x, y, z)
POL(mark(x1)) = 1 + x1 POL(F(x1, x2, x3)) = x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 5
↳Polo
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Remaining
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Remaining
ACTIVE(f(x, y, z)) -> ACTIVE(z)
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
ACTIVE(f(x, y, z)) -> ACTIVE(z)
POL(ACTIVE(x1)) = x1 POL(f(x1, x2, x3)) = 1 + x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 7
↳Dependency Graph
→DP Problem 3
↳Polo
→DP Problem 4
↳Remaining
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 4
↳Remaining
PROPER(f(x, y, z)) -> PROPER(z)
PROPER(f(x, y, z)) -> PROPER(y)
PROPER(f(x, y, z)) -> PROPER(x)
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
PROPER(f(x, y, z)) -> PROPER(z)
PROPER(f(x, y, z)) -> PROPER(y)
PROPER(f(x, y, z)) -> PROPER(x)
POL(PROPER(x1)) = x1 POL(f(x1, x2, x3)) = 1 + x1 + x2 + x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 8
↳Dependency Graph
→DP Problem 4
↳Remaining
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Remaining Obligation(s)
TOP(ok(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(proper(x))
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))