R
↳Dependency Pair Analysis
ACTIVE(f(b, c, x)) -> F(x, x, x)
ACTIVE(f(x, y, z)) -> F(x, y, active(z))
ACTIVE(f(x, y, z)) -> ACTIVE(z)
F(x, y, mark(z)) -> F(x, y, z)
F(ok(x), ok(y), ok(z)) -> F(x, y, z)
PROPER(f(x, y, z)) -> F(proper(x), proper(y), proper(z))
PROPER(f(x, y, z)) -> PROPER(x)
PROPER(f(x, y, z)) -> PROPER(y)
PROPER(f(x, y, z)) -> PROPER(z)
TOP(mark(x)) -> TOP(proper(x))
TOP(mark(x)) -> PROPER(x)
TOP(ok(x)) -> TOP(active(x))
TOP(ok(x)) -> ACTIVE(x)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Remaining
F(ok(x), ok(y), ok(z)) -> F(x, y, z)
F(x, y, mark(z)) -> F(x, y, z)
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
F(ok(x), ok(y), ok(z)) -> F(x, y, z)
F(x, y, mark(z)) -> F(x, y, z)
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
d > c
d > b
proper > {active, m, f} > mark
proper > {active, m, f} > ok
F(x1, x2, x3) -> F(x1, x2, x3)
ok(x1) -> ok(x1)
mark(x1) -> mark(x1)
active(x1) -> active(x1)
f(x1, x2, x3) -> f(x1, x2, x3)
m(x1) -> m(x1)
proper(x1) -> proper(x1)
top(x1) -> top
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Remaining
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳Remaining
ACTIVE(f(x, y, z)) -> ACTIVE(z)
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
ACTIVE(f(x, y, z)) -> ACTIVE(z)
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
{d, b} > c
proper > {active, m, f} > mark
proper > {active, m, f} > ok
ACTIVE(x1) -> ACTIVE(x1)
f(x1, x2, x3) -> f(x1, x2, x3)
active(x1) -> active(x1)
mark(x1) -> mark(x1)
m(x1) -> m(x1)
ok(x1) -> ok(x1)
proper(x1) -> proper(x1)
top(x1) -> top
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 6
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳Remaining
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳Remaining
PROPER(f(x, y, z)) -> PROPER(z)
PROPER(f(x, y, z)) -> PROPER(y)
PROPER(f(x, y, z)) -> PROPER(x)
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
PROPER(f(x, y, z)) -> PROPER(z)
PROPER(f(x, y, z)) -> PROPER(y)
PROPER(f(x, y, z)) -> PROPER(x)
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
{active, b} > m
{active, b} > c
{active, b} > f > mark
{active, b} > f > ok
proper > f > mark
proper > f > ok
PROPER(x1) -> PROPER(x1)
f(x1, x2, x3) -> f(x1, x2, x3)
active(x1) -> active(x1)
mark(x1) -> mark(x1)
m(x1) -> m(x1)
ok(x1) -> ok(x1)
proper(x1) -> proper(x1)
top(x1) -> top
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 7
↳Dependency Graph
→DP Problem 4
↳Remaining
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 4
↳Remaining Obligation(s)
TOP(ok(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(proper(x))
active(f(b, c, x)) -> mark(f(x, x, x))
active(f(x, y, z)) -> f(x, y, active(z))
active(d) -> m(b)
active(d) -> mark(c)
f(x, y, mark(z)) -> mark(f(x, y, z))
f(ok(x), ok(y), ok(z)) -> ok(f(x, y, z))
proper(b) -> ok(b)
proper(c) -> ok(c)
proper(d) -> ok(d)
proper(f(x, y, z)) -> f(proper(x), proper(y), proper(z))
top(mark(x)) -> top(proper(x))
top(ok(x)) -> top(active(x))