R
↳Dependency Pair Analysis
PLUS(s(x), y) -> PLUS(x, y)
TIMES(s(x), y) -> PLUS(y, times(x, y))
TIMES(s(x), y) -> TIMES(x, y)
DIV(x, y) -> QUOT(x, y, y)
DIV(div(x, y), z) -> DIV(x, times(y, z))
DIV(div(x, y), z) -> TIMES(y, z)
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
QUOT(x, 0, s(z)) -> DIV(x, s(z))
EQ(s(x), s(y)) -> EQ(x, y)
DIVIDES(y, x) -> EQ(x, times(div(x, y), y))
DIVIDES(y, x) -> TIMES(div(x, y), y)
DIVIDES(y, x) -> DIV(x, y)
PRIME(s(s(x))) -> PR(s(s(x)), s(x))
PR(x, s(s(y))) -> IF(divides(s(s(y)), x), x, s(y))
PR(x, s(s(y))) -> DIVIDES(s(s(y)), x)
IF(false, x, y) -> PR(x, y)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Inst
PLUS(s(x), y) -> PLUS(x, y)
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
PLUS(s(x), y) -> PLUS(x, y)
POL(PLUS(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Inst
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Inst
EQ(s(x), s(y)) -> EQ(x, y)
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
EQ(s(x), s(y)) -> EQ(x, y)
POL(EQ(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 7
↳Dependency Graph
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Inst
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 4
↳Polo
→DP Problem 5
↳Inst
TIMES(s(x), y) -> TIMES(x, y)
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
TIMES(s(x), y) -> TIMES(x, y)
POL(TIMES(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 8
↳Dependency Graph
→DP Problem 4
↳Polo
→DP Problem 5
↳Inst
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polynomial Ordering
→DP Problem 5
↳Inst
DIV(div(x, y), z) -> DIV(x, times(y, z))
QUOT(x, 0, s(z)) -> DIV(x, s(z))
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
DIV(x, y) -> QUOT(x, y, y)
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
DIV(div(x, y), z) -> DIV(x, times(y, z))
POL(plus(x1, x2)) = 0 POL(QUOT(x1, x2, x3)) = x1 POL(0) = 0 POL(DIV(x1, x2)) = x1 POL(times(x1, x2)) = 0 POL(s(x1)) = x1 POL(div(x1, x2)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 9
↳Instantiation Transformation
→DP Problem 5
↳Inst
QUOT(x, 0, s(z)) -> DIV(x, s(z))
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
DIV(x, y) -> QUOT(x, y, y)
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
one new Dependency Pair is created:
DIV(x, y) -> QUOT(x, y, y)
DIV(x'', s(z'')) -> QUOT(x'', s(z''), s(z''))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 9
↳Inst
...
→DP Problem 10
↳Polynomial Ordering
→DP Problem 5
↳Inst
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
DIV(x'', s(z'')) -> QUOT(x'', s(z''), s(z''))
QUOT(x, 0, s(z)) -> DIV(x, s(z))
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
POL(QUOT(x1, x2, x3)) = x1 POL(0) = 0 POL(DIV(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 9
↳Inst
...
→DP Problem 11
↳Dependency Graph
→DP Problem 5
↳Inst
DIV(x'', s(z'')) -> QUOT(x'', s(z''), s(z''))
QUOT(x, 0, s(z)) -> DIV(x, s(z))
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Instantiation Transformation
IF(false, x, y) -> PR(x, y)
PR(x, s(s(y))) -> IF(divides(s(s(y)), x), x, s(y))
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
one new Dependency Pair is created:
IF(false, x, y) -> PR(x, y)
IF(false, x', s(y'')) -> PR(x', s(y''))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Inst
→DP Problem 12
↳Polynomial Ordering
IF(false, x', s(y'')) -> PR(x', s(y''))
PR(x, s(s(y))) -> IF(divides(s(s(y)), x), x, s(y))
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
PR(x, s(s(y))) -> IF(divides(s(s(y)), x), x, s(y))
POL(PR(x1, x2)) = x2 POL(plus(x1, x2)) = 0 POL(eq(x1, x2)) = 0 POL(0) = 0 POL(divides(x1, x2)) = 0 POL(false) = 0 POL(times(x1, x2)) = 0 POL(true) = 0 POL(quot(x1, x2, x3)) = 0 POL(s(x1)) = 1 + x1 POL(div(x1, x2)) = 0 POL(IF(x1, x2, x3)) = x3
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Inst
→DP Problem 12
↳Polo
...
→DP Problem 13
↳Dependency Graph
IF(false, x', s(y'')) -> PR(x', s(y''))
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)