Term Rewriting System R:
[y, x, z]
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

DIV(x, y) -> QUOT(x, y, y)
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
QUOT(x, 0, s(z)) -> DIV(x, s(z))

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Polynomial Ordering


Dependency Pairs:

QUOT(x, 0, s(z)) -> DIV(x, s(z))
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
DIV(x, y) -> QUOT(x, y, y)


Rules:


div(0, y) -> 0
div(x, y) -> quot(x, y, y)
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))





The following dependency pair can be strictly oriented:

QUOT(s(x), s(y), z) -> QUOT(x, y, z)


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(QUOT(x1, x2, x3))=  x1  
  POL(0)=  0  
  POL(DIV(x1, x2))=  x1  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polynomial Ordering


Dependency Pairs:

QUOT(x, 0, s(z)) -> DIV(x, s(z))
DIV(x, y) -> QUOT(x, y, y)


Rules:


div(0, y) -> 0
div(x, y) -> quot(x, y, y)
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))





The following dependency pair can be strictly oriented:

QUOT(x, 0, s(z)) -> DIV(x, s(z))


There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(QUOT(x1, x2, x3))=  x2  
  POL(0)=  1  
  POL(DIV(x1, x2))=  x2  
  POL(s(x1))=  0  

resulting in one new DP problem.



   R
DPs
       →DP Problem 1
Polo
           →DP Problem 2
Polo
             ...
               →DP Problem 3
Dependency Graph


Dependency Pair:

DIV(x, y) -> QUOT(x, y, y)


Rules:


div(0, y) -> 0
div(x, y) -> quot(x, y, y)
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes