Term Rewriting System R:
[x, y]
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))

Termination of R to be shown.

R
Dependency Pair Analysis

R contains the following Dependency Pairs:

MINUS(x, s(y)) -> PRED(minus(x, y))
MINUS(x, s(y)) -> MINUS(x, y)
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) -> MINUS(x, y)
LOG(s(s(x))) -> LOG(s(quot(x, s(s(0)))))
LOG(s(s(x))) -> QUOT(x, s(s(0)))

Furthermore, R contains three SCCs.

R
DPs
→DP Problem 1
Polynomial Ordering
→DP Problem 2
Polo
→DP Problem 3
Polo

Dependency Pair:

MINUS(x, s(y)) -> MINUS(x, y)

Rules:

pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))

The following dependency pair can be strictly oriented:

MINUS(x, s(y)) -> MINUS(x, y)

There are no usable rules using the Ce-refinement that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(MINUS(x1, x2)) =  x2 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 4
Dependency Graph
→DP Problem 2
Polo
→DP Problem 3
Polo

Dependency Pair:

Rules:

pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polynomial Ordering
→DP Problem 3
Polo

Dependency Pair:

QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))

Rules:

pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))

The following dependency pair can be strictly oriented:

QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))

Additionally, the following usable rules using the Ce-refinement can be oriented:

minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
pred(s(x)) -> x

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(QUOT(x1, x2)) =  x1 POL(0) =  0 POL(pred(x1)) =  x1 POL(minus(x1, x2)) =  x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 5
Dependency Graph
→DP Problem 3
Polo

Dependency Pair:

Rules:

pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 3
Polynomial Ordering

Dependency Pair:

LOG(s(s(x))) -> LOG(s(quot(x, s(s(0)))))

Rules:

pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))

The following dependency pair can be strictly oriented:

LOG(s(s(x))) -> LOG(s(quot(x, s(s(0)))))

Additionally, the following usable rules using the Ce-refinement can be oriented:

quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
pred(s(x)) -> x

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(0) =  0 POL(pred(x1)) =  x1 POL(minus(x1, x2)) =  x1 POL(quot(x1, x2)) =  x1 POL(s(x1)) =  1 + x1 POL(LOG(x1)) =  1 + x1

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 3
Polo
→DP Problem 6
Dependency Graph

Dependency Pair:

Rules:

pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes