R
↳Dependency Pair Analysis
MINUS(x, s(y)) -> PRED(minus(x, y))
MINUS(x, s(y)) -> MINUS(x, y)
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) -> MINUS(x, y)
LOG(s(s(x))) -> LOG(s(quot(x, s(s(0)))))
LOG(s(s(x))) -> QUOT(x, s(s(0)))
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
MINUS(x, s(y)) -> MINUS(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
MINUS(x, s(y)) -> MINUS(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
POL(0) = 0 POL(pred(x1)) = x1 POL(log(x1)) = x1 POL(MINUS(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = 1 + x1
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
pred(x1) -> pred(x1)
minus(x1, x2) -> x1
quot(x1, x2) -> x1
log(x1) -> log(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
pred(s(x)) -> x
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
POL(QUOT(x1, x2)) = 1 + x1 + x2 POL(0) = 0 POL(pred(x1)) = x1 POL(log(x1)) = x1 POL(s(x1)) = 1 + x1
QUOT(x1, x2) -> QUOT(x1, x2)
s(x1) -> s(x1)
minus(x1, x2) -> x1
pred(x1) -> pred(x1)
quot(x1, x2) -> x1
log(x1) -> log(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳AFS
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
LOG(s(s(x))) -> LOG(s(quot(x, s(s(0)))))
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
LOG(s(s(x))) -> LOG(s(quot(x, s(s(0)))))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
pred(s(x)) -> x
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))
POL(0) = 0 POL(pred(x1)) = x1 POL(log(x1)) = x1 POL(s(x1)) = 1 + x1 POL(LOG(x1)) = 1 + x1
LOG(x1) -> LOG(x1)
s(x1) -> s(x1)
quot(x1, x2) -> x1
minus(x1, x2) -> x1
pred(x1) -> pred(x1)
log(x1) -> log(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 6
↳Dependency Graph
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
log(s(0)) -> 0
log(s(s(x))) -> s(log(s(quot(x, s(s(0))))))