R
↳Dependency Pair Analysis
LE(s(x), s(y)) -> LE(x, y)
MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)
MINUS(s(x), y) -> LE(s(x), y)
IFMINUS(false, s(x), y) -> MINUS(x, y)
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
GCD(s(x), s(y)) -> LE(y, x)
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
IFGCD(true, s(x), s(y)) -> MINUS(x, y)
IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
IFGCD(false, s(x), s(y)) -> MINUS(y, x)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
LE(s(x), s(y)) -> LE(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
LE(s(x), s(y)) -> LE(x, y)
POL(LE(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1
LE(x1, x2) -> LE(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
IFMINUS(false, s(x), y) -> MINUS(x, y)
MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
POL(IF_MINUS(x1, x2, x3)) = x1 + x2 + x3 POL(false) = 0 POL(MINUS(x1, x2)) = 1 + x1 + x2 POL(true) = 0 POL(s(x1)) = 1 + x1 POL(le) = 0
MINUS(x1, x2) -> MINUS(x1, x2)
IFMINUS(x1, x2, x3) -> IFMINUS(x1, x2, x3)
s(x1) -> s(x1)
le(x1, x2) -> le
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳AFS
IFMINUS(false, s(x), y) -> MINUS(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Argument Filtering and Ordering
IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))
IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
POL(0) = 0 POL(GCD(x1, x2)) = x1 + x2 POL(false) = 0 POL(IF_GCD(x1, x2, x3)) = x1 + x2 + x3 POL(true) = 0 POL(s(x1)) = 1 + x1 POL(le) = 0
IFGCD(x1, x2, x3) -> IFGCD(x1, x2, x3)
GCD(x1, x2) -> GCD(x1, x2)
s(x1) -> s(x1)
minus(x1, x2) -> x1
le(x1, x2) -> le
ifminus(x1, x2, x3) -> x2
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳AFS
→DP Problem 6
↳Dependency Graph
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))