Term Rewriting System R:
[y, x]
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))

Termination of R to be shown.

`   R`
`     ↳Overlay and local confluence Check`

The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

LE(s(x), s(y)) -> LE(x, y)
MINUS(x, s(y)) -> PRED(minus(x, y))
MINUS(x, s(y)) -> MINUS(x, y)
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))
GCD(s(x), s(y)) -> LE(y, x)
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
IFGCD(true, s(x), s(y)) -> MINUS(x, y)
IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
IFGCD(false, s(x), s(y)) -> MINUS(y, x)

Furthermore, R contains three SCCs.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳DPs`
`           →DP Problem 1`
`             ↳Usable Rules (Innermost)`
`           →DP Problem 2`
`             ↳UsableRules`
`           →DP Problem 3`
`             ↳UsableRules`

Dependency Pair:

LE(s(x), s(y)) -> LE(x, y)

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))

Strategy:

innermost

As we are in the innermost case, we can delete all 11 non-usable-rules.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳DPs`
`           →DP Problem 1`
`             ↳UsableRules`
`             ...`
`               →DP Problem 4`
`                 ↳Size-Change Principle`
`           →DP Problem 2`
`             ↳UsableRules`
`           →DP Problem 3`
`             ↳UsableRules`

Dependency Pair:

LE(s(x), s(y)) -> LE(x, y)

Rule:

none

Strategy:

innermost

We number the DPs as follows:
1. LE(s(x), s(y)) -> LE(x, y)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳DPs`
`           →DP Problem 1`
`             ↳UsableRules`
`           →DP Problem 2`
`             ↳Usable Rules (Innermost)`
`           →DP Problem 3`
`             ↳UsableRules`

Dependency Pair:

MINUS(x, s(y)) -> MINUS(x, y)

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))

Strategy:

innermost

As we are in the innermost case, we can delete all 11 non-usable-rules.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳DPs`
`           →DP Problem 1`
`             ↳UsableRules`
`           →DP Problem 2`
`             ↳UsableRules`
`             ...`
`               →DP Problem 5`
`                 ↳Size-Change Principle`
`           →DP Problem 3`
`             ↳UsableRules`

Dependency Pair:

MINUS(x, s(y)) -> MINUS(x, y)

Rule:

none

Strategy:

innermost

We number the DPs as follows:
1. MINUS(x, s(y)) -> MINUS(x, y)
and get the following Size-Change Graph(s):
{1} , {1}
1=1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1=1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳DPs`
`           →DP Problem 1`
`             ↳UsableRules`
`           →DP Problem 2`
`             ↳UsableRules`
`           →DP Problem 3`
`             ↳Usable Rules (Innermost)`

Dependency Pairs:

IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))

Rules:

le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
gcd(0, y) -> y
gcd(s(x), 0) -> s(x)
gcd(s(x), s(y)) -> ifgcd(le(y, x), s(x), s(y))
ifgcd(true, s(x), s(y)) -> gcd(minus(x, y), s(y))
ifgcd(false, s(x), s(y)) -> gcd(minus(y, x), s(x))

Strategy:

innermost

As we are in the innermost case, we can delete all 5 non-usable-rules.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳DPs`
`           →DP Problem 1`
`             ↳UsableRules`
`           →DP Problem 2`
`             ↳UsableRules`
`           →DP Problem 3`
`             ↳UsableRules`
`             ...`
`               →DP Problem 6`
`                 ↳Negative Polynomial Order`

Dependency Pairs:

IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))
GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))

Rules:

minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
pred(s(x)) -> x
le(s(x), s(y)) -> le(x, y)
le(0, y) -> true
le(s(x), 0) -> false

Strategy:

innermost

The following Dependency Pairs can be strictly oriented using the given order.

IFGCD(false, s(x), s(y)) -> GCD(minus(y, x), s(x))
IFGCD(true, s(x), s(y)) -> GCD(minus(x, y), s(y))

Moreover, the following usable rules (regarding the implicit AFS) are oriented.

minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
pred(s(x)) -> x
le(s(x), s(y)) -> le(x, y)
le(0, y) -> true
le(s(x), 0) -> false

Used ordering:
Polynomial Order with Interpretation:

POL( IFGCD(x1, ..., x3) ) = x2 + x3

POL( s(x1) ) = x1 + 1

POL( GCD(x1, x2) ) = x1 + x2

POL( minus(x1, x2) ) = x1

POL( pred(x1) ) = x1

POL( le(x1, x2) ) = 0

POL( true ) = 0

POL( false ) = 0

This results in one new DP problem.

`   R`
`     ↳OC`
`       →TRS2`
`         ↳DPs`
`           →DP Problem 1`
`             ↳UsableRules`
`           →DP Problem 2`
`             ↳UsableRules`
`           →DP Problem 3`
`             ↳UsableRules`
`             ...`
`               →DP Problem 7`
`                 ↳Dependency Graph`

Dependency Pair:

GCD(s(x), s(y)) -> IFGCD(le(y, x), s(x), s(y))

Rules:

minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
pred(s(x)) -> x
le(s(x), s(y)) -> le(x, y)
le(0, y) -> true
le(s(x), 0) -> false

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes