R
↳Dependency Pair Analysis
LE(s(x), s(y)) -> LE(x, y)
MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)
MINUS(s(x), y) -> LE(s(x), y)
IFMINUS(false, s(x), y) -> MINUS(x, y)
MOD(s(x), s(y)) -> IFMOD(le(y, x), s(x), s(y))
MOD(s(x), s(y)) -> LE(y, x)
IFMOD(true, s(x), s(y)) -> MOD(minus(x, y), s(y))
IFMOD(true, s(x), s(y)) -> MINUS(x, y)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
LE(s(x), s(y)) -> LE(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
LE(s(x), s(y)) -> LE(x, y)
POL(LE(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
IFMINUS(false, s(x), y) -> MINUS(x, y)
MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
IFMINUS(false, s(x), y) -> MINUS(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
POL(IF_MINUS(x1, x2, x3)) = x2 POL(0) = 0 POL(false) = 0 POL(MINUS(x1, x2)) = x1 POL(true) = 0 POL(s(x1)) = 1 + x1 POL(le(x1, x2)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Polo
MINUS(s(x), y) -> IFMINUS(le(s(x), y), s(x), y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
IFMOD(true, s(x), s(y)) -> MOD(minus(x, y), s(y))
MOD(s(x), s(y)) -> IFMOD(le(y, x), s(x), s(y))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)
IFMOD(true, s(x), s(y)) -> MOD(minus(x, y), s(y))
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
POL(0) = 0 POL(false) = 0 POL(MOD(x1, x2)) = x1 POL(minus(x1, x2)) = x1 POL(true) = 0 POL(s(x1)) = 1 + x1 POL(IF_MOD(x1, x2, x3)) = x2 POL(if_minus(x1, x2, x3)) = x2 POL(le(x1, x2)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 6
↳Dependency Graph
MOD(s(x), s(y)) -> IFMOD(le(y, x), s(x), s(y))
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
minus(0, y) -> 0
minus(s(x), y) -> ifminus(le(s(x), y), s(x), y)
ifminus(true, s(x), y) -> 0
ifminus(false, s(x), y) -> s(minus(x, y))
mod(0, y) -> 0
mod(s(x), 0) -> 0
mod(s(x), s(y)) -> ifmod(le(y, x), s(x), s(y))
ifmod(true, s(x), s(y)) -> mod(minus(x, y), s(y))
ifmod(false, s(x), s(y)) -> s(x)