Term Rewriting System R:
[x, y, z, k, l]
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

MINUS(s(x), s(y)) -> MINUS(x, y)
MINUS(minus(x, y), z) -> MINUS(x, plus(y, z))
MINUS(minus(x, y), z) -> PLUS(y, z)
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) -> MINUS(x, y)
PLUS(s(x), y) -> PLUS(x, y)
APP(cons(x, l), k) -> APP(l, k)
SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))
SUM(cons(x, cons(y, l))) -> PLUS(x, y)
SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))
SUM(app(l, cons(x, cons(y, k)))) -> APP(l, sum(cons(x, cons(y, k))))
SUM(app(l, cons(x, cons(y, k)))) -> SUM(cons(x, cons(y, k)))

Furthermore, R contains six SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Nar


Dependency Pair:

PLUS(s(x), y) -> PLUS(x, y)


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





The following dependency pair can be strictly oriented:

PLUS(s(x), y) -> PLUS(x, y)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(PLUS(x1, x2))=  x1 + x2  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 7
Dependency Graph
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Nar


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Nar


Dependency Pair:

APP(cons(x, l), k) -> APP(l, k)


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





The following dependency pair can be strictly oriented:

APP(cons(x, l), k) -> APP(l, k)


There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(APP(x1, x2))=  x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
APP(x1, x2) -> APP(x1, x2)
cons(x1, x2) -> cons(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 8
Dependency Graph
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Nar


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Nar


Dependency Pairs:

MINUS(minus(x, y), z) -> MINUS(x, plus(y, z))
MINUS(s(x), s(y)) -> MINUS(x, y)


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





The following dependency pair can be strictly oriented:

MINUS(s(x), s(y)) -> MINUS(x, y)


The following usable rules using the Ce-refinement can be oriented:

plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(plus(x1, x2))=  x1 + x2  
  POL(0)=  0  
  POL(MINUS(x1, x2))=  x1 + x2  
  POL(minus(x1, x2))=  x1 + x2  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
minus(x1, x2) -> minus(x1, x2)
plus(x1, x2) -> plus(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 9
Argument Filtering and Ordering
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Nar


Dependency Pair:

MINUS(minus(x, y), z) -> MINUS(x, plus(y, z))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





The following dependency pair can be strictly oriented:

MINUS(minus(x, y), z) -> MINUS(x, plus(y, z))


The following usable rules using the Ce-refinement can be oriented:

plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(plus(x1, x2))=  x1 + x2  
  POL(0)=  0  
  POL(MINUS(x1, x2))=  x1 + x2  
  POL(minus(x1, x2))=  1 + x1 + x2  
  POL(s(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> MINUS(x1, x2)
minus(x1, x2) -> minus(x1, x2)
plus(x1, x2) -> plus(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
           →DP Problem 9
AFS
             ...
               →DP Problem 10
Dependency Graph
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Nar


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 5
AFS
       →DP Problem 6
Nar


Dependency Pair:

SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





The following dependency pair can be strictly oriented:

SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))


The following usable rules using the Ce-refinement can be oriented:

plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(plus(x1, x2))=  x1 + x2  
  POL(SUM(x1))=  1 + x1  
  POL(0)=  1  
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(s(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
SUM(x1) -> SUM(x1)
cons(x1, x2) -> cons(x1, x2)
plus(x1, x2) -> plus(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
           →DP Problem 11
Dependency Graph
       →DP Problem 5
AFS
       →DP Problem 6
Nar


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
Argument Filtering and Ordering
       →DP Problem 6
Nar


Dependency Pair:

QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





The following dependency pair can be strictly oriented:

QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))


The following usable rules using the Ce-refinement can be oriented:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(QUOT(x1, x2))=  x1 + x2  
  POL(plus(x1, x2))=  x1 + x2  
  POL(0)=  0  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
QUOT(x1, x2) -> QUOT(x1, x2)
s(x1) -> s(x1)
minus(x1, x2) -> x1
plus(x1, x2) -> plus(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
           →DP Problem 12
Dependency Graph
       →DP Problem 6
Nar


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Narrowing Transformation


Dependency Pair:

SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))
three new Dependency Pairs are created:

SUM(app(nil, cons(x', cons(y', k'')))) -> SUM(sum(cons(x', cons(y', k''))))
SUM(app(cons(x'', l''), cons(x0, cons(y', k'')))) -> SUM(cons(x'', app(l'', sum(cons(x0, cons(y', k''))))))
SUM(app(l, cons(x'', cons(y'', k')))) -> SUM(app(l, sum(cons(plus(x'', y''), k'))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Nar
           →DP Problem 13
Narrowing Transformation


Dependency Pairs:

SUM(app(l, cons(x'', cons(y'', k')))) -> SUM(app(l, sum(cons(plus(x'', y''), k'))))
SUM(app(nil, cons(x', cons(y', k'')))) -> SUM(sum(cons(x', cons(y', k''))))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SUM(app(nil, cons(x', cons(y', k'')))) -> SUM(sum(cons(x', cons(y', k''))))
one new Dependency Pair is created:

SUM(app(nil, cons(x'', cons(y'', k''')))) -> SUM(sum(cons(plus(x'', y''), k''')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Nar
           →DP Problem 13
Nar
             ...
               →DP Problem 14
Narrowing Transformation


Dependency Pairs:

SUM(app(nil, cons(x'', cons(y'', k''')))) -> SUM(sum(cons(plus(x'', y''), k''')))
SUM(app(l, cons(x'', cons(y'', k')))) -> SUM(app(l, sum(cons(plus(x'', y''), k'))))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SUM(app(l, cons(x'', cons(y'', k')))) -> SUM(app(l, sum(cons(plus(x'', y''), k'))))
six new Dependency Pairs are created:

SUM(app(nil, cons(x''', cons(y''', k'')))) -> SUM(sum(cons(plus(x''', y'''), k'')))
SUM(app(cons(x', l''), cons(x''', cons(y''', k'')))) -> SUM(cons(x', app(l'', sum(cons(plus(x''', y'''), k'')))))
SUM(app(l, cons(x''', cons(y''', nil)))) -> SUM(app(l, cons(plus(x''', y'''), nil)))
SUM(app(l, cons(x''', cons(y''', cons(y', l''))))) -> SUM(app(l, sum(cons(plus(plus(x''', y'''), y'), l''))))
SUM(app(l, cons(0, cons(y''', k')))) -> SUM(app(l, sum(cons(y''', k'))))
SUM(app(l, cons(s(x'), cons(y''', k')))) -> SUM(app(l, sum(cons(s(plus(x', y''')), k'))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Nar
           →DP Problem 13
Nar
             ...
               →DP Problem 15
Argument Filtering and Ordering


Dependency Pairs:

SUM(app(l, cons(s(x'), cons(y''', k')))) -> SUM(app(l, sum(cons(s(plus(x', y''')), k'))))
SUM(app(l, cons(0, cons(y''', k')))) -> SUM(app(l, sum(cons(y''', k'))))
SUM(app(l, cons(x''', cons(y''', cons(y', l''))))) -> SUM(app(l, sum(cons(plus(plus(x''', y'''), y'), l''))))
SUM(app(l, cons(x''', cons(y''', nil)))) -> SUM(app(l, cons(plus(x''', y'''), nil)))
SUM(app(nil, cons(x''', cons(y''', k'')))) -> SUM(sum(cons(plus(x''', y'''), k'')))
SUM(app(nil, cons(x'', cons(y'', k''')))) -> SUM(sum(cons(plus(x'', y''), k''')))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





The following dependency pairs can be strictly oriented:

SUM(app(nil, cons(x''', cons(y''', k'')))) -> SUM(sum(cons(plus(x''', y'''), k'')))
SUM(app(nil, cons(x'', cons(y'', k''')))) -> SUM(sum(cons(plus(x'', y''), k''')))


The following usable rules using the Ce-refinement can be oriented:

sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(plus(x1, x2))=  x1 + x2  
  POL(SUM(x1))=  1 + x1  
  POL(0)=  0  
  POL(cons(x1, x2))=  x1 + x2  
  POL(nil)=  0  
  POL(sum(x1))=  x1  
  POL(s(x1))=  x1  
  POL(app(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
SUM(x1) -> SUM(x1)
app(x1, x2) -> app(x1, x2)
sum(x1) -> sum(x1)
cons(x1, x2) -> cons(x1, x2)
plus(x1, x2) -> plus(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Nar
           →DP Problem 13
Nar
             ...
               →DP Problem 16
Argument Filtering and Ordering


Dependency Pairs:

SUM(app(l, cons(s(x'), cons(y''', k')))) -> SUM(app(l, sum(cons(s(plus(x', y''')), k'))))
SUM(app(l, cons(0, cons(y''', k')))) -> SUM(app(l, sum(cons(y''', k'))))
SUM(app(l, cons(x''', cons(y''', cons(y', l''))))) -> SUM(app(l, sum(cons(plus(plus(x''', y'''), y'), l''))))
SUM(app(l, cons(x''', cons(y''', nil)))) -> SUM(app(l, cons(plus(x''', y'''), nil)))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





The following dependency pairs can be strictly oriented:

SUM(app(l, cons(s(x'), cons(y''', k')))) -> SUM(app(l, sum(cons(s(plus(x', y''')), k'))))
SUM(app(l, cons(0, cons(y''', k')))) -> SUM(app(l, sum(cons(y''', k'))))
SUM(app(l, cons(x''', cons(y''', cons(y', l''))))) -> SUM(app(l, sum(cons(plus(plus(x''', y'''), y'), l''))))
SUM(app(l, cons(x''', cons(y''', nil)))) -> SUM(app(l, cons(plus(x''', y'''), nil)))


The following usable rules using the Ce-refinement can be oriented:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(plus(x1, x2))=  x1 + x2  
  POL(SUM(x1))=  1 + x1  
  POL(0)=  0  
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(nil)=  0  
  POL(s(x1))=  x1  
  POL(sum(x1))=  x1  
  POL(app(x1, x2))=  x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
SUM(x1) -> SUM(x1)
app(x1, x2) -> app(x1, x2)
cons(x1, x2) -> cons(x1, x2)
sum(x1) -> sum(x1)
s(x1) -> s(x1)
plus(x1, x2) -> plus(x1, x2)


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
       →DP Problem 3
AFS
       →DP Problem 4
AFS
       →DP Problem 5
AFS
       →DP Problem 6
Nar
           →DP Problem 13
Nar
             ...
               →DP Problem 17
Dependency Graph


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
minus(minus(x, y), z) -> minus(x, plus(y, z))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:01 minutes