R
↳Dependency Pair Analysis
F(g(x)) -> F(f(x))
F(g(x)) -> F(x)
F'(s(x), y, y) -> F'(y, x, s(x))
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
F(g(x)) -> F(x)
F(g(x)) -> F(f(x))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
F(g(x)) -> F(x)
F(g(x)) -> F(f(x))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
POL(g(x1)) = 1 + x1 POL(h) = 0 POL(F(x1)) = 1 + x1 POL(f(x1)) = x1
F(x1) -> F(x1)
g(x1) -> g(x1)
f(x1) -> f(x1)
h(x1) -> h
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳AFS
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
F'(s(x), y, y) -> F'(y, x, s(x))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
F'(s(x), y, y) -> F'(y, x, s(x))
POL(F'(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1
F'(x1, x2, x3) -> F'(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 4
↳Dependency Graph
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))