R
↳Dependency Pair Analysis
F(g(x)) -> F(f(x))
F(g(x)) -> F(x)
F'(s(x), y, y) -> F'(y, x, s(x))
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
→DP Problem 2
↳Inst
F(g(x)) -> F(x)
F(g(x)) -> F(f(x))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
two new Dependency Pairs are created:
F(g(x)) -> F(f(x))
F(g(g(x''))) -> F(g(f(f(x''))))
F(g(h(x''))) -> F(h(g(x'')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 3
↳Polynomial Ordering
→DP Problem 2
↳Inst
F(g(g(x''))) -> F(g(f(f(x''))))
F(g(x)) -> F(x)
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
F(g(g(x''))) -> F(g(f(f(x''))))
F(g(x)) -> F(x)
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
POL(g(x1)) = 1 + x1 POL(h(x1)) = 0 POL(f(x1)) = x1 POL(F(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 3
↳Polo
...
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Inst
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Instantiation Transformation
F'(s(x), y, y) -> F'(y, x, s(x))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
one new Dependency Pair is created:
F'(s(x), y, y) -> F'(y, x, s(x))
F'(s(x0), s(x'''), s(x''')) -> F'(s(x'''), x0, s(x0))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Inst
→DP Problem 5
↳Forward Instantiation Transformation
F'(s(x0), s(x'''), s(x''')) -> F'(s(x'''), x0, s(x0))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
one new Dependency Pair is created:
F'(s(x0), s(x'''), s(x''')) -> F'(s(x'''), x0, s(x0))
F'(s(s(x'''''')), s(x'''0), s(x'''0)) -> F'(s(x'''0), s(x''''''), s(s(x'''''')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Inst
→DP Problem 5
↳FwdInst
...
→DP Problem 6
↳Polynomial Ordering
F'(s(s(x'''''')), s(x'''0), s(x'''0)) -> F'(s(x'''0), s(x''''''), s(s(x'''''')))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
F'(s(s(x'''''')), s(x'''0), s(x'''0)) -> F'(s(x'''0), s(x''''''), s(s(x'''''')))
POL(F'(x1, x2, x3)) = 1 + x1 + x2 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Inst
→DP Problem 5
↳FwdInst
...
→DP Problem 7
↳Dependency Graph
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))