R
↳Dependency Pair Analysis
F(g(x)) -> F(f(x))
F(g(x)) -> F(x)
F'(s(x), y, y) -> F'(y, x, s(x))
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
F(g(x)) -> F(x)
F(g(x)) -> F(f(x))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
F(g(x)) -> F(x)
F(g(x)) -> F(f(x))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
POL(g(x1)) = 1 + x1 POL(h(x1)) = 0 POL(f'(x1, x2, x3)) = 1 POL(s(x1)) = 0 POL(f(x1)) = x1 POL(F(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Polo
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
F'(s(x), y, y) -> F'(y, x, s(x))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
F'(s(x), y, y) -> F'(y, x, s(x))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
POL(g(x1)) = 0 POL(F'(x1, x2, x3)) = x1 + x2 POL(h(x1)) = 0 POL(f'(x1, x2, x3)) = 0 POL(s(x1)) = 1 + x1 POL(f(x1)) = 0
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 4
↳Dependency Graph
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))