R
↳Dependency Pair Analysis
F(g(x)) -> F(f(x))
F(g(x)) -> F(x)
F'(s(x), y, y) -> F'(y, x, s(x))
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳Inst
F(g(x)) -> F(x)
F(g(x)) -> F(f(x))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
F(g(x)) -> F(x)
F(g(x)) -> F(f(x))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
f' > s
F > s
h > s
f > s
g > s
F(x1) -> F(x1)
g(x1) -> g(x1)
f(x1) -> x1
h(x1) -> h
f'(x1, x2, x3) -> x3
s(x1) -> s
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳Inst
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Instantiation Transformation
F'(s(x), y, y) -> F'(y, x, s(x))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
one new Dependency Pair is created:
F'(s(x), y, y) -> F'(y, x, s(x))
F'(s(x0), s(x'''), s(x''')) -> F'(s(x'''), x0, s(x0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Inst
→DP Problem 4
↳Remaining Obligation(s)
F'(s(x0), s(x'''), s(x''')) -> F'(s(x'''), x0, s(x0))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))