R
↳Dependency Pair Analysis
F(g(x)) -> F(f(x))
F(g(x)) -> F(x)
F'(s(x), y, y) -> F'(y, x, s(x))
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
→DP Problem 2
↳Inst
F(g(x)) -> F(x)
F(g(x)) -> F(f(x))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
two new Dependency Pairs are created:
F(g(x)) -> F(f(x))
F(g(g(x''))) -> F(g(f(f(x''))))
F(g(h(x''))) -> F(h(g(x'')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 2
↳Inst
F(g(g(x''))) -> F(g(f(f(x''))))
F(g(x)) -> F(x)
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
F(g(g(x''))) -> F(g(f(f(x''))))
F(g(x)) -> F(x)
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
f' > s
F > s
h > s
f > s
g > s
F(x1) -> F(x1)
g(x1) -> g(x1)
f(x1) -> x1
h(x1) -> h
f'(x1, x2, x3) -> x3
s(x1) -> s
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 3
↳AFS
...
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Inst
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Instantiation Transformation
F'(s(x), y, y) -> F'(y, x, s(x))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
one new Dependency Pair is created:
F'(s(x), y, y) -> F'(y, x, s(x))
F'(s(x0), s(x'''), s(x''')) -> F'(s(x'''), x0, s(x0))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Inst
→DP Problem 5
↳Forward Instantiation Transformation
F'(s(x0), s(x'''), s(x''')) -> F'(s(x'''), x0, s(x0))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
one new Dependency Pair is created:
F'(s(x0), s(x'''), s(x''')) -> F'(s(x'''), x0, s(x0))
F'(s(s(x'''''')), s(x'''0), s(x'''0)) -> F'(s(x'''0), s(x''''''), s(s(x'''''')))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Inst
→DP Problem 5
↳FwdInst
...
→DP Problem 6
↳Instantiation Transformation
F'(s(s(x'''''')), s(x'''0), s(x'''0)) -> F'(s(x'''0), s(x''''''), s(s(x'''''')))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
one new Dependency Pair is created:
F'(s(s(x'''''')), s(x'''0), s(x'''0)) -> F'(s(x'''0), s(x''''''), s(s(x'''''')))
F'(s(s(x''''''0)), s(s(x''''''''')), s(s(x'''''''''))) -> F'(s(s(x''''''''')), s(x''''''0), s(s(x''''''0)))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Inst
→DP Problem 5
↳FwdInst
...
→DP Problem 7
↳Forward Instantiation Transformation
F'(s(s(x''''''0)), s(s(x''''''''')), s(s(x'''''''''))) -> F'(s(s(x''''''''')), s(x''''''0), s(s(x''''''0)))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
one new Dependency Pair is created:
F'(s(s(x''''''0)), s(s(x''''''''')), s(s(x'''''''''))) -> F'(s(s(x''''''''')), s(x''''''0), s(s(x''''''0)))
F'(s(s(s(x''''''''''''))), s(s(x'''''''''0)), s(s(x'''''''''0))) -> F'(s(s(x'''''''''0)), s(s(x'''''''''''')), s(s(s(x''''''''''''))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Inst
→DP Problem 5
↳FwdInst
...
→DP Problem 8
↳Instantiation Transformation
F'(s(s(s(x''''''''''''))), s(s(x'''''''''0)), s(s(x'''''''''0))) -> F'(s(s(x'''''''''0)), s(s(x'''''''''''')), s(s(s(x''''''''''''))))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))
one new Dependency Pair is created:
F'(s(s(s(x''''''''''''))), s(s(x'''''''''0)), s(s(x'''''''''0))) -> F'(s(s(x'''''''''0)), s(s(x'''''''''''')), s(s(s(x''''''''''''))))
F'(s(s(s(x''''''''''''0))), s(s(s(x'''''''''''''''))), s(s(s(x''''''''''''''')))) -> F'(s(s(s(x'''''''''''''''))), s(s(x''''''''''''0)), s(s(s(x''''''''''''0))))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Inst
→DP Problem 5
↳FwdInst
...
→DP Problem 9
↳Remaining Obligation(s)
F'(s(s(s(x''''''''''''0))), s(s(s(x'''''''''''''''))), s(s(s(x''''''''''''''')))) -> F'(s(s(s(x'''''''''''''''))), s(s(x''''''''''''0)), s(s(s(x''''''''''''0))))
f(g(x)) -> g(f(f(x)))
f(h(x)) -> h(g(x))
f'(s(x), y, y) -> f'(y, x, s(x))