R
↳Dependency Pair Analysis
F(0, 1, x) -> F(s(x), x, x)
F(x, y, s(z)) -> F(0, 1, z)
R
↳DPs
→DP Problem 1
↳Instantiation Transformation
F(x, y, s(z)) -> F(0, 1, z)
F(0, 1, x) -> F(s(x), x, x)
g(x, y) -> x
g(x, y) -> y
f(0, 1, x) -> f(s(x), x, x)
f(x, y, s(z)) -> s(f(0, 1, z))
two new Dependency Pairs are created:
F(x, y, s(z)) -> F(0, 1, z)
F(0, 1, s(z'')) -> F(0, 1, z'')
F(s(x'''), y', s(z')) -> F(0, 1, z')
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Argument Filtering and Ordering
F(0, 1, s(z'')) -> F(0, 1, z'')
F(s(x'''), y', s(z')) -> F(0, 1, z')
F(0, 1, x) -> F(s(x), x, x)
g(x, y) -> x
g(x, y) -> y
f(0, 1, x) -> f(s(x), x, x)
f(x, y, s(z)) -> s(f(0, 1, z))
F(0, 1, s(z'')) -> F(0, 1, z'')
F(s(x'''), y', s(z')) -> F(0, 1, z')
g(x, y) -> x
g(x, y) -> y
f(0, 1, x) -> f(s(x), x, x)
f(x, y, s(z)) -> s(f(0, 1, z))
POL(g(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1
F(x1, x2, x3) -> x3
s(x1) -> s(x1)
g(x1, x2) -> g(x1, x2)
f(x1, x2, x3) -> x3
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳AFS
...
→DP Problem 3
↳Dependency Graph
F(0, 1, x) -> F(s(x), x, x)
g(x, y) -> x
g(x, y) -> y
f(0, 1, x) -> f(s(x), x, x)
f(x, y, s(z)) -> s(f(0, 1, z))