Term Rewriting System R:
[x, y, n, u, v, w, z]
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Termination of R to be shown.

R
Dependency Pair Analysis

R contains the following Dependency Pairs:

MINUS(s(x), s(y)) -> MINUS(x, y)
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) -> MINUS(x, y)
APP(add(n, x), y) -> APP(x, y)
CONCAT(cons(u, v), y) -> CONCAT(v, y)
LESSLEAVES(cons(u, v), cons(w, z)) -> LESSLEAVES(concat(u, v), concat(w, z))
LESSLEAVES(cons(u, v), cons(w, z)) -> CONCAT(u, v)
LESSLEAVES(cons(u, v), cons(w, z)) -> CONCAT(w, z)

Furthermore, R contains seven SCCs.

R
DPs
→DP Problem 1
Polynomial Ordering
→DP Problem 2
Polo
→DP Problem 3
Polo
→DP Problem 4
Polo
→DP Problem 5
Polo
→DP Problem 6
Polo
→DP Problem 7
Polo

Dependency Pair:

MINUS(s(x), s(y)) -> MINUS(x, y)

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

The following dependency pair can be strictly oriented:

MINUS(s(x), s(y)) -> MINUS(x, y)

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(MINUS(x1, x2)) =  x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 8
Dependency Graph
→DP Problem 2
Polo
→DP Problem 3
Polo
→DP Problem 4
Polo
→DP Problem 5
Polo
→DP Problem 6
Polo
→DP Problem 7
Polo

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polynomial Ordering
→DP Problem 3
Polo
→DP Problem 4
Polo
→DP Problem 5
Polo
→DP Problem 6
Polo
→DP Problem 7
Polo

Dependency Pair:

APP(add(n, x), y) -> APP(x, y)

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

The following dependency pair can be strictly oriented:

APP(add(n, x), y) -> APP(x, y)

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(APP(x1, x2)) =  x1 POL(add(x1, x2)) =  1 + x2

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 9
Dependency Graph
→DP Problem 3
Polo
→DP Problem 4
Polo
→DP Problem 5
Polo
→DP Problem 6
Polo
→DP Problem 7
Polo

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 3
Polynomial Ordering
→DP Problem 4
Polo
→DP Problem 5
Polo
→DP Problem 6
Polo
→DP Problem 7
Polo

Dependency Pair:

CONCAT(cons(u, v), y) -> CONCAT(v, y)

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

The following dependency pair can be strictly oriented:

CONCAT(cons(u, v), y) -> CONCAT(v, y)

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(cons(x1, x2)) =  1 + x2 POL(CONCAT(x1, x2)) =  x1

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 3
Polo
→DP Problem 10
Dependency Graph
→DP Problem 4
Polo
→DP Problem 5
Polo
→DP Problem 6
Polo
→DP Problem 7
Polo

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 3
Polo
→DP Problem 4
Polynomial Ordering
→DP Problem 5
Polo
→DP Problem 6
Polo
→DP Problem 7
Polo

Dependency Pair:

QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

The following dependency pair can be strictly oriented:

QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))

Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(QUOT(x1, x2)) =  x1 POL(0) =  1 POL(minus(x1, x2)) =  x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 3
Polo
→DP Problem 4
Polo
→DP Problem 11
Dependency Graph
→DP Problem 5
Polo
→DP Problem 6
Polo
→DP Problem 7
Polo

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 3
Polo
→DP Problem 4
Polo
→DP Problem 5
Polynomial Ordering
→DP Problem 6
Polo
→DP Problem 7
Polo

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

The following dependency pair can be strictly oriented:

There are no usable rules w.r.t. to the implicit AFS that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(REVERSE(x1)) =  x1 POL(add(x1, x2)) =  1 + x2

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 3
Polo
→DP Problem 4
Polo
→DP Problem 5
Polo
→DP Problem 12
Dependency Graph
→DP Problem 6
Polo
→DP Problem 7
Polo

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 3
Polo
→DP Problem 4
Polo
→DP Problem 5
Polo
→DP Problem 6
Polynomial Ordering
→DP Problem 7
Polo

Dependency Pair:

LESSLEAVES(cons(u, v), cons(w, z)) -> LESSLEAVES(concat(u, v), concat(w, z))

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

The following dependency pair can be strictly oriented:

LESSLEAVES(cons(u, v), cons(w, z)) -> LESSLEAVES(concat(u, v), concat(w, z))

Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(cons(x1, x2)) =  1 + x1 + x2 POL(LESS_LEAVES(x1, x2)) =  x2 POL(leaf) =  1 POL(concat(x1, x2)) =  x1 + x2

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 3
Polo
→DP Problem 4
Polo
→DP Problem 5
Polo
→DP Problem 6
Polo
→DP Problem 13
Dependency Graph
→DP Problem 7
Polo

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Using the Dependency Graph resulted in no new DP problems.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 3
Polo
→DP Problem 4
Polo
→DP Problem 5
Polo
→DP Problem 6
Polo
→DP Problem 7
Polynomial Ordering

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

The following dependency pair can be strictly oriented:

Additionally, the following usable rules w.r.t. to the implicit AFS can be oriented:

reverse(nil) -> nil
app(nil, y) -> y

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(reverse(x1)) =  x1 POL(SHUFFLE(x1)) =  1 + x1 POL(nil) =  0 POL(app(x1, x2)) =  x1 + x2 POL(add(x1, x2)) =  1 + x2

resulting in one new DP problem.

R
DPs
→DP Problem 1
Polo
→DP Problem 2
Polo
→DP Problem 3
Polo
→DP Problem 4
Polo
→DP Problem 5
Polo
→DP Problem 6
Polo
→DP Problem 7
Polo
→DP Problem 14
Dependency Graph

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
app(nil, y) -> y
reverse(nil) -> nil
shuffle(nil) -> nil
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes