Term Rewriting System R:
[x, y]
f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, s(x), s(y)) -> s(x)
if(false, s(x), s(y)) -> s(y)
g(x, c(y)) -> c(g(x, y))
g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(s(x)) -> F(x)
G(x, c(y)) -> G(x, y)
G(x, c(y)) -> G(x, if(f(x), c(g(s(x), y)), c(y)))
G(x, c(y)) -> IF(f(x), c(g(s(x), y)), c(y))
G(x, c(y)) -> F(x)
G(x, c(y)) -> G(s(x), y)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Size-Change Principle
       →DP Problem 2
SCP


Dependency Pair:

F(s(x)) -> F(x)


Rules:


f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, s(x), s(y)) -> s(x)
if(false, s(x), s(y)) -> s(y)
g(x, c(y)) -> c(g(x, y))
g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))





We number the DPs as follows:
  1. F(s(x)) -> F(x)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
SCP
       →DP Problem 2
Size-Change Principle


Dependency Pairs:

G(x, c(y)) -> G(s(x), y)
G(x, c(y)) -> G(x, y)


Rules:


f(0) -> true
f(1) -> false
f(s(x)) -> f(x)
if(true, s(x), s(y)) -> s(x)
if(false, s(x), s(y)) -> s(y)
g(x, c(y)) -> c(g(x, y))
g(x, c(y)) -> g(x, if(f(x), c(g(s(x), y)), c(y)))





We number the DPs as follows:
  1. G(x, c(y)) -> G(s(x), y)
  2. G(x, c(y)) -> G(x, y)
and get the following Size-Change Graph(s):
{2, 1} , {2, 1}
2>2
{2, 1} , {2, 1}
1=1
2>2

which lead(s) to this/these maximal multigraph(s):
{2, 1} , {2, 1}
2>2
{2, 1} , {2, 1}
1=1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
c(x1) -> c(x1)
s(x1) -> s(x1)

We obtain no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes