R
↳Dependency Pair Analysis
MINUS(s(x), s(y)) -> MINUS(x, y)
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) -> MINUS(x, y)
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(x, s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), minus(x, s(0)))
PLUS(plus(x, s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), plus(x, s(0)))
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
MINUS(s(x), s(y)) -> MINUS(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
MINUS(s(x), s(y)) -> MINUS(x, y)
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
→DP Problem 3
↳Nar
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
QUOT(x1, x2) -> QUOT(x1, x2)
s(x1) -> s(x1)
minus(x1, x2) -> x1
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Nar
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Narrowing Transformation
PLUS(plus(x, s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), plus(x, s(0)))
PLUS(minus(x, s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), minus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
two new Dependency Pairs are created:
PLUS(minus(x, s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), minus(x, s(0)))
PLUS(minus(s(x''), s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), minus(x'', 0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Narrowing Transformation
PLUS(minus(s(x''), s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), minus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(plus(x, s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), plus(x, s(0)))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
four new Dependency Pairs are created:
PLUS(plus(x, s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(0, s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(0))
PLUS(plus(s(x''), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(plus(x'', s(0))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 7
↳Narrowing Transformation
PLUS(plus(s(x''), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), minus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(s(x''), s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), minus(x'', 0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
two new Dependency Pairs are created:
PLUS(minus(x, s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), minus(x, s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), minus(x''', 0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 8
↳Narrowing Transformation
PLUS(minus(s(x'''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), minus(x''', 0))
PLUS(minus(x, s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), minus(x, s(0)))
PLUS(plus(0, s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(minus(s(x''), s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), minus(x'', 0))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(plus(s(x''), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(plus(x'', s(0))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
two new Dependency Pairs are created:
PLUS(minus(s(x''), s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), x''')
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 9
↳Narrowing Transformation
PLUS(minus(s(x'''), s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), x''')
PLUS(minus(s(x''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), minus(x, s(0)))
PLUS(plus(s(x''), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(s(x'''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), minus(x''', 0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
two new Dependency Pairs are created:
PLUS(plus(0, s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 10
↳Narrowing Transformation
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(minus(s(x''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), minus(x''', 0))
PLUS(minus(x, s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), minus(x, s(0)))
PLUS(plus(s(x''), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(plus(x'', s(0))))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(s(x'''), s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), x''')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
four new Dependency Pairs are created:
PLUS(plus(s(x''), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(0), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(0)))
PLUS(plus(s(s(x')), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(plus(x', s(0)))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 11
↳Narrowing Transformation
PLUS(plus(s(s(x')), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(minus(s(x'''), s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), x''')
PLUS(minus(s(x''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), minus(x''', 0))
PLUS(minus(x, s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), minus(x, s(0)))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
three new Dependency Pairs are created:
PLUS(minus(x, s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x, s(0)))
PLUS(minus(s(x''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), minus(x'', 0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 12
↳Narrowing Transformation
PLUS(minus(s(x''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(0), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(minus(s(x'''), s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), x''')
PLUS(minus(s(x''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), minus(x''', 0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(plus(s(s(x')), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(plus(x', s(0)))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
two new Dependency Pairs are created:
PLUS(minus(s(x'''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), minus(x''', 0))
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 13
↳Narrowing Transformation
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), minus(x''', 0))
PLUS(minus(x, s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(s(x')), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(minus(s(x'''), s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), x''')
PLUS(minus(s(x''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), minus(x'', 0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(s(x''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), minus(x'', 0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
two new Dependency Pairs are created:
PLUS(minus(s(x''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 14
↳Narrowing Transformation
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), minus(x''', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(s(x')), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(minus(s(x'''), s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), x''')
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
one new Dependency Pair is created:
PLUS(minus(s(x'''), s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), x''')
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 15
↳Narrowing Transformation
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), minus(x''', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(s(x')), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
two new Dependency Pairs are created:
PLUS(plus(s(0), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(0)))
PLUS(plus(s(0), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(0)))
PLUS(plus(s(0), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(0)))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 16
↳Narrowing Transformation
PLUS(plus(s(0), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(0)))
PLUS(plus(s(0), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), minus(x''', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(s(x')), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(plus(x', s(0)))))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
four new Dependency Pairs are created:
PLUS(plus(s(s(x')), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(plus(x', s(0)))))
PLUS(plus(s(s(x')), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(plus(x', s(0)))))
PLUS(plus(s(s(x')), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(plus(x', s(0)))))
PLUS(plus(s(s(0)), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(0))))
PLUS(plus(s(s(s(x''))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(plus(x'', s(0))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 17
↳Narrowing Transformation
PLUS(plus(s(s(s(x''))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(0)), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(0))))
PLUS(plus(s(s(x')), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(plus(x', s(0)))))
PLUS(plus(s(s(x')), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), minus(x''', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(plus(s(0), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(0)))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
three new Dependency Pairs are created:
PLUS(minus(x, s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(s(x''')))), s(s(s(s(y'')))))) -> PLUS(minus(x''', y''), minus(x, s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 18
↳Narrowing Transformation
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
PLUS(minus(x, s(0)), minus(s(s(s(s(x''')))), s(s(s(s(y'')))))) -> PLUS(minus(x''', y''), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x, s(0)))
PLUS(plus(s(s(0)), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(0))))
PLUS(plus(s(s(x')), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(plus(x', s(0)))))
PLUS(plus(s(s(x')), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(0)))
PLUS(plus(s(0), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), minus(x''', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(plus(s(s(s(x''))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(plus(x'', s(0))))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
three new Dependency Pairs are created:
PLUS(minus(s(x''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), x'''')
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 19
↳Narrowing Transformation
PLUS(minus(s(x''''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), x'''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(s(x''')))), s(s(s(s(y'')))))) -> PLUS(minus(x''', y''), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x, s(0)))
PLUS(plus(s(s(s(x''))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(0)), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(0))))
PLUS(plus(s(s(x')), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(plus(x', s(0)))))
PLUS(plus(s(s(x')), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(0)))
PLUS(plus(s(0), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), minus(x''', 0))
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
three new Dependency Pairs are created:
PLUS(minus(s(x'''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(x'')), s(s(0)))) -> PLUS(x'', minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), x'''')
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 20
↳Narrowing Transformation
PLUS(minus(s(x''''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(x'')), s(s(0)))) -> PLUS(x'', minus(x''', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
PLUS(minus(x, s(0)), minus(s(s(s(s(x''')))), s(s(s(s(y'')))))) -> PLUS(minus(x''', y''), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x, s(0)))
PLUS(plus(s(s(s(x''))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(0)), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(0))))
PLUS(plus(s(s(x')), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(plus(x', s(0)))))
PLUS(plus(s(s(x')), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(0)))
PLUS(plus(s(0), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(s(x''''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), x'''')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
three new Dependency Pairs are created:
PLUS(minus(s(x''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x0')), s(s(0)))) -> PLUS(x0', minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), x''')
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 21
↳Narrowing Transformation
PLUS(minus(s(x'''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x0')), s(s(0)))) -> PLUS(x0', minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(x'')), s(s(0)))) -> PLUS(x'', minus(x''', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), x'''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
PLUS(minus(x, s(0)), minus(s(s(s(s(x''')))), s(s(s(s(y'')))))) -> PLUS(minus(x''', y''), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x, s(0)))
PLUS(plus(s(s(s(x''))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(0)), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(0))))
PLUS(plus(s(s(x')), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(plus(x', s(0)))))
PLUS(plus(s(s(x')), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(0)))
PLUS(plus(s(0), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(s(x''''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), x'''')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
two new Dependency Pairs are created:
PLUS(plus(s(s(0)), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(0))))
PLUS(plus(s(s(0)), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(0))))
PLUS(plus(s(s(0)), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(0))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 22
↳Narrowing Transformation
PLUS(plus(s(s(0)), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(0))))
PLUS(plus(s(s(0)), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(0))))
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x0')), s(s(0)))) -> PLUS(x0', minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(x'')), s(s(0)))) -> PLUS(x'', minus(x''', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), x'''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
PLUS(minus(x, s(0)), minus(s(s(s(s(x''')))), s(s(s(s(y'')))))) -> PLUS(minus(x''', y''), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x, s(0)))
PLUS(plus(s(s(s(x''))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(x')), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(plus(x', s(0)))))
PLUS(plus(s(s(x')), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(0)))
PLUS(plus(s(0), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(s(x'''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), x''')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
four new Dependency Pairs are created:
PLUS(plus(s(s(s(x''))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(s(x''))), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(s(x''))), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(s(0))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(0)))))
PLUS(plus(s(s(s(s(x')))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(plus(x', s(0)))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 23
↳Narrowing Transformation
PLUS(plus(s(s(s(s(x')))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(plus(x', s(0)))))))
PLUS(plus(s(s(s(0))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(0)))))
PLUS(plus(s(s(s(x''))), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(s(x''))), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(0)), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(0))))
PLUS(minus(s(x'''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x0')), s(s(0)))) -> PLUS(x0', minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(x'')), s(s(0)))) -> PLUS(x'', minus(x''', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), x'''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
PLUS(minus(x, s(0)), minus(s(s(s(s(x''')))), s(s(s(s(y'')))))) -> PLUS(minus(x''', y''), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x, s(0)))
PLUS(plus(s(s(x')), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(plus(x', s(0)))))
PLUS(plus(s(s(x')), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(0)))
PLUS(plus(s(0), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(plus(s(s(0)), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(0))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
three new Dependency Pairs are created:
PLUS(minus(x, s(0)), minus(s(s(s(s(x''')))), s(s(s(s(y'')))))) -> PLUS(minus(x''', y''), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(s(x'''')))), s(s(s(s(0)))))) -> PLUS(x'''', minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(s(s(x''))))), s(s(s(s(s(y'))))))) -> PLUS(minus(x'', y'), minus(x, s(0)))
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x''')))), s(s(s(s(y'')))))) -> PLUS(minus(x''', y''), minus(x'', 0))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 24
↳Narrowing Transformation
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x''')))), s(s(s(s(y'')))))) -> PLUS(minus(x''', y''), minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(s(s(x''))))), s(s(s(s(s(y'))))))) -> PLUS(minus(x'', y'), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(s(x'''')))), s(s(s(s(0)))))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(s(s(0))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(0)))))
PLUS(plus(s(s(s(x''))), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(s(x''))), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(0)), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(0))))
PLUS(plus(s(s(0)), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(0))))
PLUS(minus(s(x'''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x0')), s(s(0)))) -> PLUS(x0', minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(x'')), s(s(0)))) -> PLUS(x'', minus(x''', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), x'''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
PLUS(minus(x, s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x, s(0)))
PLUS(plus(s(s(x')), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(plus(x', s(0)))))
PLUS(plus(s(s(x')), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(0)))
PLUS(plus(s(0), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(plus(s(s(s(s(x')))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(plus(x', s(0)))))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
three new Dependency Pairs are created:
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''''))), s(s(s(0))))) -> PLUS(x'''', minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(s(x')))), s(s(s(s(y'')))))) -> PLUS(minus(x', y''), minus(x''', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), x'''')
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 25
↳Narrowing Transformation
PLUS(minus(s(x''''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(s(s(x')))), s(s(s(s(y'')))))) -> PLUS(minus(x', y''), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''''))), s(s(s(0))))) -> PLUS(x'''', minus(x''', 0))
PLUS(minus(x, s(0)), minus(s(s(s(s(s(x''))))), s(s(s(s(s(y'))))))) -> PLUS(minus(x'', y'), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(s(x'''')))), s(s(s(s(0)))))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(s(s(s(x')))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(plus(x', s(0)))))))
PLUS(plus(s(s(s(0))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(0)))))
PLUS(plus(s(s(s(x''))), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(s(x''))), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(0)), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(0))))
PLUS(plus(s(s(0)), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(0))))
PLUS(minus(s(x'''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x0')), s(s(0)))) -> PLUS(x0', minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(x'')), s(s(0)))) -> PLUS(x'', minus(x''', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), x'''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x, s(0)))
PLUS(plus(s(s(x')), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(plus(x', s(0)))))
PLUS(plus(s(s(x')), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(0)))
PLUS(plus(s(0), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x''')))), s(s(s(s(y'')))))) -> PLUS(minus(x''', y''), minus(x'', 0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
three new Dependency Pairs are created:
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x0)))), s(s(s(s(y'')))))) -> PLUS(minus(x0, y''), minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), x''')
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 26
↳Narrowing Transformation
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x0)))), s(s(s(s(y'')))))) -> PLUS(minus(x0, y''), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(s(x')))), s(s(s(s(y'')))))) -> PLUS(minus(x', y''), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''''))), s(s(s(0))))) -> PLUS(x'''', minus(x''', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x''')))), s(s(s(s(y'')))))) -> PLUS(minus(x''', y''), minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(s(s(x''))))), s(s(s(s(s(y'))))))) -> PLUS(minus(x'', y'), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(s(x'''')))), s(s(s(s(0)))))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(s(s(s(x')))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(plus(x', s(0)))))))
PLUS(plus(s(s(s(0))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(0)))))
PLUS(plus(s(s(s(x''))), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(s(x''))), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(0)), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(0))))
PLUS(plus(s(s(0)), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(0))))
PLUS(minus(s(x'''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x0')), s(s(0)))) -> PLUS(x0', minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(x'')), s(s(0)))) -> PLUS(x'', minus(x''', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), x'''')
PLUS(minus(s(x''), s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x, s(0)))
PLUS(plus(s(s(x')), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(plus(x', s(0)))))
PLUS(plus(s(s(x')), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(0)))
PLUS(plus(s(0), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(s(x''''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), x'''')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
three new Dependency Pairs are created:
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''''))), s(s(s(0))))) -> PLUS(x'''', minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(s(x')))), s(s(s(s(y'')))))) -> PLUS(minus(x', y''), minus(x''', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), x'''')
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 27
↳Narrowing Transformation
PLUS(minus(s(x''''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(s(s(x')))), s(s(s(s(y'')))))) -> PLUS(minus(x', y''), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''''))), s(s(s(0))))) -> PLUS(x'''', minus(x''', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x0)))), s(s(s(s(y'')))))) -> PLUS(minus(x0, y''), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(s(s(x')))), s(s(s(s(y'')))))) -> PLUS(minus(x', y''), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''''))), s(s(s(0))))) -> PLUS(x'''', minus(x''', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x''')))), s(s(s(s(y'')))))) -> PLUS(minus(x''', y''), minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(s(s(x''))))), s(s(s(s(s(y'))))))) -> PLUS(minus(x'', y'), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(s(x'''')))), s(s(s(s(0)))))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(s(s(s(x')))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(plus(x', s(0)))))))
PLUS(plus(s(s(s(0))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(0)))))
PLUS(plus(s(s(s(x''))), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(s(x''))), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(0)), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(0))))
PLUS(plus(s(s(0)), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(0))))
PLUS(minus(s(x'''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(x0')), s(s(0)))) -> PLUS(x0', minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(x'')), s(s(0)))) -> PLUS(x'', minus(x''', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), x'''')
PLUS(minus(s(x''), s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x, s(0)))
PLUS(plus(s(s(x')), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(plus(x', s(0)))))
PLUS(plus(s(s(x')), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(0)))
PLUS(plus(s(0), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), x''')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
three new Dependency Pairs are created:
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x0)))), s(s(s(s(y'')))))) -> PLUS(minus(x0, y''), minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), x''')
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 28
↳Narrowing Transformation
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x0)))), s(s(s(s(y'')))))) -> PLUS(minus(x0, y''), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x'', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(s(x')))), s(s(s(s(y'')))))) -> PLUS(minus(x', y''), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''''))), s(s(s(0))))) -> PLUS(x'''', minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x0)))), s(s(s(s(y'')))))) -> PLUS(minus(x0, y''), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(s(s(x')))), s(s(s(s(y'')))))) -> PLUS(minus(x', y''), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''''))), s(s(s(0))))) -> PLUS(x'''', minus(x''', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x''')))), s(s(s(s(y'')))))) -> PLUS(minus(x''', y''), minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(s(s(x''))))), s(s(s(s(s(y'))))))) -> PLUS(minus(x'', y'), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(s(x'''')))), s(s(s(s(0)))))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(s(s(s(x')))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(plus(x', s(0)))))))
PLUS(plus(s(s(s(0))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(0)))))
PLUS(plus(s(s(s(x''))), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(s(x''))), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(0)), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(0))))
PLUS(plus(s(s(0)), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(0))))
PLUS(minus(s(x'''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(x0')), s(s(0)))) -> PLUS(x0', minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(x'')), s(s(0)))) -> PLUS(x'', minus(x''', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), x'''')
PLUS(minus(s(x''), s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x, s(0)))
PLUS(plus(s(s(x')), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(plus(x', s(0)))))
PLUS(plus(s(s(x')), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(0)))
PLUS(plus(s(0), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(s(x''''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), x'''')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
two new Dependency Pairs are created:
PLUS(plus(s(s(s(0))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(0)))))
PLUS(plus(s(s(s(0))), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(s(0)))))
PLUS(plus(s(s(s(0))), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(s(0)))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 29
↳Narrowing Transformation
PLUS(plus(s(s(s(0))), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(s(0)))))
PLUS(plus(s(s(s(0))), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(s(0)))))
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x0)))), s(s(s(s(y'')))))) -> PLUS(minus(x0, y''), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(s(s(x')))), s(s(s(s(y'')))))) -> PLUS(minus(x', y''), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''''))), s(s(s(0))))) -> PLUS(x'''', minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x0)))), s(s(s(s(y'')))))) -> PLUS(minus(x0, y''), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(s(s(x')))), s(s(s(s(y'')))))) -> PLUS(minus(x', y''), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''''))), s(s(s(0))))) -> PLUS(x'''', minus(x''', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x''')))), s(s(s(s(y'')))))) -> PLUS(minus(x''', y''), minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(s(s(x''))))), s(s(s(s(s(y'))))))) -> PLUS(minus(x'', y'), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(s(x'''')))), s(s(s(s(0)))))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(s(s(s(x')))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(plus(x', s(0)))))))
PLUS(plus(s(s(s(x''))), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(s(x''))), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(0)), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(0))))
PLUS(plus(s(s(0)), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(0))))
PLUS(minus(s(x'''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(x0')), s(s(0)))) -> PLUS(x0', minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(x'')), s(s(0)))) -> PLUS(x'', minus(x''', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), x'''')
PLUS(minus(s(x''), s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x, s(0)))
PLUS(plus(s(s(x')), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(plus(x', s(0)))))
PLUS(plus(s(s(x')), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(0)))
PLUS(plus(s(0), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), x''')
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))
four new Dependency Pairs are created:
PLUS(plus(s(s(s(s(x')))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(plus(x', s(0)))))))
PLUS(plus(s(s(s(s(x')))), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(s(plus(x', s(0)))))))
PLUS(plus(s(s(s(s(x')))), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(s(s(plus(x', s(0)))))))
PLUS(plus(s(s(s(s(0)))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(s(0))))))
PLUS(plus(s(s(s(s(s(x''))))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(s(plus(x'', s(0))))))))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 30
↳Remaining Obligation(s)
PLUS(plus(s(s(s(s(s(x''))))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(s(plus(x'', s(0))))))))
PLUS(plus(s(s(s(s(0)))), s(0)), plus(y, s(s(z)))) -> PLUS(plus(y, s(s(z))), s(s(s(s(s(0))))))
PLUS(plus(s(s(s(s(x')))), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(s(s(plus(x', s(0)))))))
PLUS(plus(s(s(s(s(x')))), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(s(plus(x', s(0)))))))
PLUS(plus(s(s(s(0))), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(s(0)))))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x0)))), s(s(s(s(y'')))))) -> PLUS(minus(x0, y''), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(s(s(x')))), s(s(s(s(y'')))))) -> PLUS(minus(x', y''), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''''))), s(s(s(0))))) -> PLUS(x'''', minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x'))), s(s(s(y'))))) -> PLUS(minus(x', y'), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x0)))), s(s(s(s(y'')))))) -> PLUS(minus(x0, y''), minus(x'', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(s(x''))), s(s(s(y'))))) -> PLUS(minus(x'', y'), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(s(s(x')))), s(s(s(s(y'')))))) -> PLUS(minus(x', y''), minus(x''', 0))
PLUS(minus(s(x'''), s(0)), minus(s(s(s(x''''))), s(s(s(0))))) -> PLUS(x'''', minus(x''', 0))
PLUS(minus(s(x''), s(0)), minus(s(s(s(s(x''')))), s(s(s(s(y'')))))) -> PLUS(minus(x''', y''), minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(s(s(x''))))), s(s(s(s(s(y'))))))) -> PLUS(minus(x'', y'), minus(x, s(0)))
PLUS(minus(x, s(0)), minus(s(s(s(s(x'''')))), s(s(s(s(0)))))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(s(s(x''))), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(s(x''))), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(plus(x'', s(0))))))
PLUS(plus(s(s(0)), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(0))))
PLUS(plus(s(s(0)), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(s(0))))
PLUS(minus(s(x'''), s(0)), minus(s(s(x0)), s(s(z'')))) -> PLUS(minus(x0, z''), x''')
PLUS(minus(s(x''), s(0)), minus(s(s(x0')), s(s(0)))) -> PLUS(x0', minus(x'', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x')), s(s(z'')))) -> PLUS(minus(x', z''), x'''')
PLUS(minus(s(x'''), s(0)), minus(s(s(x'')), s(s(0)))) -> PLUS(x'', minus(x''', 0))
PLUS(minus(s(x''''), s(0)), minus(s(s(x''')), s(s(z'')))) -> PLUS(minus(x''', z''), x'''')
PLUS(minus(s(x''), s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x'', 0))
PLUS(minus(x, s(0)), minus(s(s(s(x'''))), s(s(s(0))))) -> PLUS(x''', minus(x, s(0)))
PLUS(plus(s(s(x')), s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), s(s(plus(x', s(0)))))
PLUS(plus(s(s(x')), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(plus(x', s(0)))))
PLUS(plus(s(0), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(0)))
PLUS(plus(s(0), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(s(0)))
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x'''), s(0)), minus(s(x'), s(s(z')))) -> PLUS(minus(x', s(z')), x''')
PLUS(minus(s(x''''), s(0)), minus(s(x''), s(s(z')))) -> PLUS(minus(x'', s(z')), x'''')
PLUS(minus(x, s(0)), minus(s(s(x'''')), s(s(0)))) -> PLUS(x'''', minus(x, s(0)))
PLUS(plus(s(x''), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(plus(x'', s(0))))
PLUS(plus(s(x''), s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(plus(x'', s(0))))
PLUS(plus(0, s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(0))
PLUS(plus(0, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), s(0))
PLUS(plus(x, s(0)), plus(s(x''), s(s(z')))) -> PLUS(s(plus(x'', s(s(z')))), plus(x, s(0)))
PLUS(plus(x, s(0)), plus(0, s(s(z')))) -> PLUS(s(s(z')), plus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(plus(s(s(s(0))), s(0)), plus(s(x'), s(s(z')))) -> PLUS(s(plus(x', s(s(z')))), s(s(s(s(0)))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
plus(plus(x, s(0)), plus(y, s(s(z)))) -> plus(plus(y, s(s(z))), plus(x, s(0)))