R
↳Dependency Pair Analysis
MINUS(s(x), s(y)) -> MINUS(x, y)
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) -> MINUS(x, y)
PLUS(s(x), y) -> PLUS(x, y)
PLUS(minus(x, s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), minus(x, s(0)))
R
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳MRR
MINUS(s(x), s(y)) -> MINUS(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Negative Polynomial Order
→DP Problem 3
↳MRR
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
POL( QUOT(x1, x2) ) = x1
POL( s(x1) ) = x1 + 1
POL( minus(x1, x2) ) = x1
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Neg POLO
→DP Problem 4
↳Dependency Graph
→DP Problem 3
↳MRR
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳Modular Removal of Rules
PLUS(minus(x, s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), minus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(minus(x, s(0)), minus(y, s(s(z)))) -> plus(minus(y, s(s(z))), minus(x, s(0)))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
minus(s(x), s(y)) -> minus(x, y)
minus(x, 0) -> x
POL(PLUS(x1, x2)) = 1 + x1 + x2 POL(0) = 0 POL(minus(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = x1
5 non usable rules have been deleted.
minus(x, 0) -> x
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳MRR
→DP Problem 5
↳Modular Removal of Rules
PLUS(minus(x, s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), minus(x, s(0)))
PLUS(s(x), y) -> PLUS(x, y)
minus(s(x), s(y)) -> minus(x, y)
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
minus(s(x), s(y)) -> minus(x, y)
POL(PLUS(x1, x2)) = 1 + x1 + x2 POL(0) = 0 POL(minus(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = 1 + x1
PLUS(s(x), y) -> PLUS(x, y)
minus(s(x), s(y)) -> minus(x, y)
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Neg POLO
→DP Problem 3
↳MRR
→DP Problem 5
↳MRR
...
→DP Problem 6
↳Dependency Graph
PLUS(minus(x, s(0)), minus(y, s(s(z)))) -> PLUS(minus(y, s(s(z))), minus(x, s(0)))
none