Term Rewriting System R:
[x, y]
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
f(0) -> s(0)
f(s(x)) -> minus(s(x), g(f(x)))
g(0) -> 0
g(s(x)) -> minus(s(x), f(g(x)))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

MINUS(s(x), s(y)) -> MINUS(x, y)
F(s(x)) -> MINUS(s(x), g(f(x)))
F(s(x)) -> G(f(x))
F(s(x)) -> F(x)
G(s(x)) -> MINUS(s(x), f(g(x)))
G(s(x)) -> F(g(x))
G(s(x)) -> G(x)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
AFS


Dependency Pair:

MINUS(s(x), s(y)) -> MINUS(x, y)


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
f(0) -> s(0)
f(s(x)) -> minus(s(x), g(f(x)))
g(0) -> 0
g(s(x)) -> minus(s(x), f(g(x)))





The following dependency pair can be strictly oriented:

MINUS(s(x), s(y)) -> MINUS(x, y)


The following rules can be oriented:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
f(0) -> s(0)
f(s(x)) -> minus(s(x), g(f(x)))
g(0) -> 0
g(s(x)) -> minus(s(x), f(g(x)))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{f, s}

resulting in one new DP problem.
Used Argument Filtering System:
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
minus(x1, x2) -> x1
f(x1) -> f(x1)
g(x1) -> g(x1)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
AFS


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
f(0) -> s(0)
f(s(x)) -> minus(s(x), g(f(x)))
g(0) -> 0
g(s(x)) -> minus(s(x), f(g(x)))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Argument Filtering and Ordering


Dependency Pairs:

G(s(x)) -> G(x)
F(s(x)) -> F(x)
G(s(x)) -> F(g(x))
F(s(x)) -> G(f(x))


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
f(0) -> s(0)
f(s(x)) -> minus(s(x), g(f(x)))
g(0) -> 0
g(s(x)) -> minus(s(x), f(g(x)))





The following dependency pairs can be strictly oriented:

G(s(x)) -> G(x)
F(s(x)) -> F(x)
G(s(x)) -> F(g(x))
F(s(x)) -> G(f(x))


The following rules can be oriented:

f(0) -> s(0)
f(s(x)) -> minus(s(x), g(f(x)))
g(0) -> 0
g(s(x)) -> minus(s(x), f(g(x)))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{f, s} > F > G
{f, s} > g

resulting in one new DP problem.
Used Argument Filtering System:
F(x1) -> F(x1)
G(x1) -> G(x1)
s(x1) -> s(x1)
f(x1) -> f(x1)
g(x1) -> g(x1)
minus(x1, x2) -> x1


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
AFS
           →DP Problem 4
Dependency Graph


Dependency Pair:


Rules:


minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
f(0) -> s(0)
f(s(x)) -> minus(s(x), g(f(x)))
g(0) -> 0
g(s(x)) -> minus(s(x), f(g(x)))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes