Term Rewriting System R:
[x]
f(x) -> s(x)
f(s(s(x))) -> s(f(f(x)))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

F(s(s(x))) -> F(f(x))
F(s(s(x))) -> F(x)

Furthermore, R contains one SCC.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`

Dependency Pairs:

F(s(s(x))) -> F(x)
F(s(s(x))) -> F(f(x))

Rules:

f(x) -> s(x)
f(s(s(x))) -> s(f(f(x)))

The following dependency pairs can be strictly oriented:

F(s(s(x))) -> F(x)
F(s(s(x))) -> F(f(x))

The following usable rules using the Ce-refinement can be oriented:

f(x) -> s(x)
f(s(s(x))) -> s(f(f(x)))

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(s(x1)) =  1 + x1 POL(F(x1)) =  1 + x1 POL(f(x1)) =  1 + x1

resulting in one new DP problem.
Used Argument Filtering System:
F(x1) -> F(x1)
s(x1) -> s(x1)
f(x1) -> f(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 2`
`             ↳Dependency Graph`

Dependency Pair:

Rules:

f(x) -> s(x)
f(s(s(x))) -> s(f(f(x)))

Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes