R
↳Dependency Pair Analysis
F(s(x), y) -> F(f(x, y), y)
F(s(x), y) -> F(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
F(s(x), y) -> F(x, y)
F(s(x), y) -> F(f(x, y), y)
f(0, y) -> 0
f(s(x), y) -> f(f(x, y), y)
no new Dependency Pairs are created.
F(s(x), y) -> F(f(x, y), y)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
F(s(x), y) -> F(x, y)
f(0, y) -> 0
f(s(x), y) -> f(f(x, y), y)
one new Dependency Pair is created:
F(s(x), y) -> F(x, y)
F(s(s(x'')), y'') -> F(s(x''), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
F(s(s(x'')), y'') -> F(s(x''), y'')
f(0, y) -> 0
f(s(x), y) -> f(f(x, y), y)
one new Dependency Pair is created:
F(s(s(x'')), y'') -> F(s(x''), y'')
F(s(s(s(x''''))), y'''') -> F(s(s(x'''')), y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Polynomial Ordering
F(s(s(s(x''''))), y'''') -> F(s(s(x'''')), y'''')
f(0, y) -> 0
f(s(x), y) -> f(f(x, y), y)
F(s(s(s(x''''))), y'''') -> F(s(s(x'''')), y'''')
POL(s(x1)) = 1 + x1 POL(F(x1, x2)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
f(0, y) -> 0
f(s(x), y) -> f(f(x, y), y)