Term Rewriting System R:
[x, y, z]
times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

TIMES(x, plus(y, s(z))) -> PLUS(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
TIMES(x, plus(y, s(z))) -> TIMES(x, plus(y, times(s(z), 0)))
TIMES(x, plus(y, s(z))) -> PLUS(y, times(s(z), 0))
TIMES(x, plus(y, s(z))) -> TIMES(s(z), 0)
TIMES(x, plus(y, s(z))) -> TIMES(x, s(z))
TIMES(x, s(y)) -> PLUS(times(x, y), x)
TIMES(x, s(y)) -> TIMES(x, y)
PLUS(x, s(y)) -> PLUS(x, y)

Furthermore, R contains two SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 2`
`         ↳Remaining`

Dependency Pair:

PLUS(x, s(y)) -> PLUS(x, y)

Rules:

times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))

The following dependency pair can be strictly oriented:

PLUS(x, s(y)) -> PLUS(x, y)

There are no usable rules w.r.t. to the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 3`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳Remaining`

Dependency Pair:

Rules:

times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
Dependency Pairs:

TIMES(x, s(y)) -> TIMES(x, y)
TIMES(x, plus(y, s(z))) -> TIMES(x, s(z))
TIMES(x, plus(y, s(z))) -> TIMES(x, plus(y, times(s(z), 0)))

Rules:

times(x, plus(y, s(z))) -> plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))

Termination of R could not be shown.
Duration:
0:01 minutes