R
↳Dependency Pair Analysis
TIMES(x, plus(y, 1)) -> PLUS(times(x, plus(y, times(1, 0))), x)
TIMES(x, plus(y, 1)) -> TIMES(x, plus(y, times(1, 0)))
TIMES(x, plus(y, 1)) -> PLUS(y, times(1, 0))
TIMES(x, plus(y, 1)) -> TIMES(1, 0)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
TIMES(x, plus(y, 1)) -> TIMES(x, plus(y, times(1, 0)))
times(x, plus(y, 1)) -> plus(times(x, plus(y, times(1, 0))), x)
times(x, 1) -> x
times(x, 0) -> 0
plus(x, 0) -> x
one new Dependency Pair is created:
TIMES(x, plus(y, 1)) -> TIMES(x, plus(y, times(1, 0)))
TIMES(x, plus(y, 1)) -> TIMES(x, plus(y, 0))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Polynomial Ordering
TIMES(x, plus(y, 1)) -> TIMES(x, plus(y, 0))
times(x, plus(y, 1)) -> plus(times(x, plus(y, times(1, 0))), x)
times(x, 1) -> x
times(x, 0) -> 0
plus(x, 0) -> x
TIMES(x, plus(y, 1)) -> TIMES(x, plus(y, 0))
plus(x, 0) -> x
POL(plus(x1, x2)) = 1 + x1 + x2 POL(TIMES(x1, x2)) = x2 POL(0) = 0 POL(1) = 1
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Polo
...
→DP Problem 3
↳Dependency Graph
times(x, plus(y, 1)) -> plus(times(x, plus(y, times(1, 0))), x)
times(x, 1) -> x
times(x, 0) -> 0
plus(x, 0) -> x