pred(s(

minus(

minus(

quot(0, s(

quot(s(

R

↳Dependency Pair Analysis

MINUS(x, s(y)) -> PRED(minus(x,y))

MINUS(x, s(y)) -> MINUS(x,y)

QUOT(s(x), s(y)) -> QUOT(minus(x,y), s(y))

QUOT(s(x), s(y)) -> MINUS(x,y)

Furthermore,

R

↳DPs

→DP Problem 1

↳Polynomial Ordering

→DP Problem 2

↳Polo

**MINUS( x, s(y)) -> MINUS(x, y)**

pred(s(x)) ->x

minus(x, 0) ->x

minus(x, s(y)) -> pred(minus(x,y))

quot(0, s(y)) -> 0

quot(s(x), s(y)) -> s(quot(minus(x,y), s(y)))

The following dependency pair can be strictly oriented:

MINUS(x, s(y)) -> MINUS(x,y)

There are no usable rules using the Ce-refinement that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:

_{ }^{ }POL(MINUS(x)_{1}, x_{2})= x _{2}_{ }^{ }_{ }^{ }POL(s(x)_{1})= 1 + x _{1}_{ }^{ }

resulting in one new DP problem.

R

↳DPs

→DP Problem 1

↳Polo

→DP Problem 3

↳Dependency Graph

→DP Problem 2

↳Polo

pred(s(x)) ->x

minus(x, 0) ->x

minus(x, s(y)) -> pred(minus(x,y))

quot(0, s(y)) -> 0

quot(s(x), s(y)) -> s(quot(minus(x,y), s(y)))

Using the Dependency Graph resulted in no new DP problems.

R

↳DPs

→DP Problem 1

↳Polo

→DP Problem 2

↳Polynomial Ordering

**QUOT(s( x), s(y)) -> QUOT(minus(x, y), s(y))**

pred(s(x)) ->x

minus(x, 0) ->x

minus(x, s(y)) -> pred(minus(x,y))

quot(0, s(y)) -> 0

quot(s(x), s(y)) -> s(quot(minus(x,y), s(y)))

The following dependency pair can be strictly oriented:

QUOT(s(x), s(y)) -> QUOT(minus(x,y), s(y))

Additionally, the following usable rules using the Ce-refinement can be oriented:

minus(x, 0) ->x

minus(x, s(y)) -> pred(minus(x,y))

pred(s(x)) ->x

Used ordering: Polynomial ordering with Polynomial interpretation:

_{ }^{ }POL(QUOT(x)_{1}, x_{2})= x _{1}_{ }^{ }_{ }^{ }POL(0)= 0 _{ }^{ }_{ }^{ }POL(pred(x)_{1})= x _{1}_{ }^{ }_{ }^{ }POL(minus(x)_{1}, x_{2})= x _{1}_{ }^{ }_{ }^{ }POL(s(x)_{1})= 1 + x _{1}_{ }^{ }

resulting in one new DP problem.

R

↳DPs

→DP Problem 1

↳Polo

→DP Problem 2

↳Polo

→DP Problem 4

↳Dependency Graph

pred(s(x)) ->x

minus(x, 0) ->x

minus(x, s(y)) -> pred(minus(x,y))

quot(0, s(y)) -> 0

quot(s(x), s(y)) -> s(quot(minus(x,y), s(y)))

Using the Dependency Graph resulted in no new DP problems.

Duration:

0:00 minutes