Term Rewriting System R:
[k, l, x, y]
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

APP(cons(x, l), k) -> APP(l, k)
SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))
SUM(cons(x, cons(y, l))) -> PLUS(x, y)
SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))
SUM(app(l, cons(x, cons(y, k)))) -> APP(l, sum(cons(x, cons(y, k))))
SUM(app(l, cons(x, cons(y, k)))) -> SUM(cons(x, cons(y, k)))
SUM(plus(cons(0, x), cons(y, l))) -> PRED(sum(cons(s(x), cons(y, l))))
SUM(plus(cons(0, x), cons(y, l))) -> SUM(cons(s(x), cons(y, l)))
PLUS(s(x), y) -> PLUS(x, y)

Furthermore, R contains four SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`
`       →DP Problem 3`
`         ↳Remaining Obligation(s)`
`       →DP Problem 4`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

APP(cons(x, l), k) -> APP(l, k)

Rules:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

• Dependency Pair:

PLUS(s(x), y) -> PLUS(x, y)

Rules:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

• Dependency Pair:

SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))

Rules:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

• Dependency Pair:

SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))

Rules:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`
`       →DP Problem 3`
`         ↳Remaining Obligation(s)`
`       →DP Problem 4`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

APP(cons(x, l), k) -> APP(l, k)

Rules:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

• Dependency Pair:

PLUS(s(x), y) -> PLUS(x, y)

Rules:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

• Dependency Pair:

SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))

Rules:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

• Dependency Pair:

SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))

Rules:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`
`       →DP Problem 3`
`         ↳Remaining Obligation(s)`
`       →DP Problem 4`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

APP(cons(x, l), k) -> APP(l, k)

Rules:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

• Dependency Pair:

PLUS(s(x), y) -> PLUS(x, y)

Rules:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

• Dependency Pair:

SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))

Rules:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

• Dependency Pair:

SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))

Rules:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Remaining Obligation(s)`
`       →DP Problem 2`
`         ↳Remaining Obligation(s)`
`       →DP Problem 3`
`         ↳Remaining Obligation(s)`
`       →DP Problem 4`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
• Dependency Pair:

APP(cons(x, l), k) -> APP(l, k)

Rules:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

• Dependency Pair:

PLUS(s(x), y) -> PLUS(x, y)

Rules:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

• Dependency Pair:

SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))

Rules:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

• Dependency Pair:

SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))

Rules:

app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)

Termination of R could not be shown.
Duration:
0:00 minutes