R
↳Dependency Pair Analysis
TIMES(x, s(y)) -> PLUS(times(x, y), x)
TIMES(x, s(y)) -> TIMES(x, y)
PLUS(x, s(y)) -> PLUS(x, y)
PLUS(s(x), y) -> PLUS(x, y)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
→DP Problem 2
↳AFS
PLUS(s(x), y) -> PLUS(x, y)
PLUS(x, s(y)) -> PLUS(x, y)
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(0, x) -> x
plus(x, s(y)) -> s(plus(x, y))
plus(s(x), y) -> s(plus(x, y))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(x, s(y)) -> PLUS(x, y)
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(0, x) -> x
plus(x, s(y)) -> s(plus(x, y))
plus(s(x), y) -> s(plus(x, y))
times > plus > s
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)
times(x1, x2) -> times(x1, x2)
plus(x1, x2) -> plus(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 3
↳Dependency Graph
→DP Problem 2
↳AFS
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(0, x) -> x
plus(x, s(y)) -> s(plus(x, y))
plus(s(x), y) -> s(plus(x, y))
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
TIMES(x, s(y)) -> TIMES(x, y)
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(0, x) -> x
plus(x, s(y)) -> s(plus(x, y))
plus(s(x), y) -> s(plus(x, y))
TIMES(x, s(y)) -> TIMES(x, y)
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(0, x) -> x
plus(x, s(y)) -> s(plus(x, y))
plus(s(x), y) -> s(plus(x, y))
times > plus > s
TIMES(x1, x2) -> TIMES(x1, x2)
s(x1) -> s(x1)
times(x1, x2) -> times(x1, x2)
plus(x1, x2) -> plus(x1, x2)
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
→DP Problem 4
↳Dependency Graph
times(x, 0) -> 0
times(x, s(y)) -> plus(times(x, y), x)
plus(x, 0) -> x
plus(0, x) -> x
plus(x, s(y)) -> s(plus(x, y))
plus(s(x), y) -> s(plus(x, y))