Term Rewriting System R:
[y, u, v, w, z]
concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

CONCAT(cons(u, v), y) -> CONCAT(v, y)
LESSLEAVES(cons(u, v), cons(w, z)) -> LESSLEAVES(concat(u, v), concat(w, z))
LESSLEAVES(cons(u, v), cons(w, z)) -> CONCAT(u, v)
LESSLEAVES(cons(u, v), cons(w, z)) -> CONCAT(w, z)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Argument Filtering and Ordering
       →DP Problem 2
Remaining


Dependency Pair:

CONCAT(cons(u, v), y) -> CONCAT(v, y)


Rules:


concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))





The following dependency pair can be strictly oriented:

CONCAT(cons(u, v), y) -> CONCAT(v, y)


The following rules can be oriented:

concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))


Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
{concat, cons, true}
{leaf, false}

resulting in one new DP problem.
Used Argument Filtering System:
CONCAT(x1, x2) -> CONCAT(x1, x2)
cons(x1, x2) -> cons(x1, x2)
concat(x1, x2) -> concat(x1, x2)
lessleaves(x1, x2) -> lessleaves(x1, x2)


   R
DPs
       →DP Problem 1
AFS
           →DP Problem 3
Dependency Graph
       →DP Problem 2
Remaining


Dependency Pair:


Rules:


concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))





Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
AFS
       →DP Problem 2
Remaining Obligation(s)




The following remains to be proven:
Dependency Pair:

LESSLEAVES(cons(u, v), cons(w, z)) -> LESSLEAVES(concat(u, v), concat(w, z))


Rules:


concat(leaf, y) -> y
concat(cons(u, v), y) -> cons(u, concat(v, y))
lessleaves(x, leaf) -> false
lessleaves(leaf, cons(w, z)) -> true
lessleaves(cons(u, v), cons(w, z)) -> lessleaves(concat(u, v), concat(w, z))




Termination of R could not be shown.
Duration:
0:00 minutes