R
↳Dependency Pair Analysis
EQ(s(x), s(y)) -> EQ(x, y)
UNION(edge(x, y, i), h) -> UNION(i, h)
REACH(x, y, edge(u, v, i), h) -> IFREACH1(eq(x, u), x, y, edge(u, v, i), h)
REACH(x, y, edge(u, v, i), h) -> EQ(x, u)
IFREACH1(true, x, y, edge(u, v, i), h) -> IFREACH2(eq(y, v), x, y, edge(u, v, i), h)
IFREACH1(true, x, y, edge(u, v, i), h) -> EQ(y, v)
IFREACH1(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, edge(u, v, h))
IFREACH2(false, x, y, edge(u, v, i), h) -> OR(reach(x, y, i, h), reach(v, y, union(i, h), empty))
IFREACH2(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, h)
IFREACH2(false, x, y, edge(u, v, i), h) -> REACH(v, y, union(i, h), empty)
IFREACH2(false, x, y, edge(u, v, i), h) -> UNION(i, h)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
EQ(s(x), s(y)) -> EQ(x, y)
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
or(true, y) -> true
or(false, y) -> y
union(empty, h) -> h
union(edge(x, y, i), h) -> edge(x, y, union(i, h))
reach(x, y, empty, h) -> false
reach(x, y, edge(u, v, i), h) -> ifreach1(eq(x, u), x, y, edge(u, v, i), h)
ifreach1(true, x, y, edge(u, v, i), h) -> ifreach2(eq(y, v), x, y, edge(u, v, i), h)
ifreach1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h))
ifreach2(true, x, y, edge(u, v, i), h) -> true
ifreach2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
EQ(s(x), s(y)) -> EQ(x, y)
POL(EQ(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
or(true, y) -> true
or(false, y) -> y
union(empty, h) -> h
union(edge(x, y, i), h) -> edge(x, y, union(i, h))
reach(x, y, empty, h) -> false
reach(x, y, edge(u, v, i), h) -> ifreach1(eq(x, u), x, y, edge(u, v, i), h)
ifreach1(true, x, y, edge(u, v, i), h) -> ifreach2(eq(y, v), x, y, edge(u, v, i), h)
ifreach1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h))
ifreach2(true, x, y, edge(u, v, i), h) -> true
ifreach2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Nar
UNION(edge(x, y, i), h) -> UNION(i, h)
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
or(true, y) -> true
or(false, y) -> y
union(empty, h) -> h
union(edge(x, y, i), h) -> edge(x, y, union(i, h))
reach(x, y, empty, h) -> false
reach(x, y, edge(u, v, i), h) -> ifreach1(eq(x, u), x, y, edge(u, v, i), h)
ifreach1(true, x, y, edge(u, v, i), h) -> ifreach2(eq(y, v), x, y, edge(u, v, i), h)
ifreach1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h))
ifreach2(true, x, y, edge(u, v, i), h) -> true
ifreach2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
UNION(edge(x, y, i), h) -> UNION(i, h)
POL(edge(x1, x2, x3)) = 1 + x3 POL(UNION(x1, x2)) = x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Nar
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
or(true, y) -> true
or(false, y) -> y
union(empty, h) -> h
union(edge(x, y, i), h) -> edge(x, y, union(i, h))
reach(x, y, empty, h) -> false
reach(x, y, edge(u, v, i), h) -> ifreach1(eq(x, u), x, y, edge(u, v, i), h)
ifreach1(true, x, y, edge(u, v, i), h) -> ifreach2(eq(y, v), x, y, edge(u, v, i), h)
ifreach1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h))
ifreach2(true, x, y, edge(u, v, i), h) -> true
ifreach2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Narrowing Transformation
IFREACH1(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, edge(u, v, h))
IFREACH2(false, x, y, edge(u, v, i), h) -> REACH(v, y, union(i, h), empty)
IFREACH2(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, h)
IFREACH1(true, x, y, edge(u, v, i), h) -> IFREACH2(eq(y, v), x, y, edge(u, v, i), h)
REACH(x, y, edge(u, v, i), h) -> IFREACH1(eq(x, u), x, y, edge(u, v, i), h)
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
or(true, y) -> true
or(false, y) -> y
union(empty, h) -> h
union(edge(x, y, i), h) -> edge(x, y, union(i, h))
reach(x, y, empty, h) -> false
reach(x, y, edge(u, v, i), h) -> ifreach1(eq(x, u), x, y, edge(u, v, i), h)
ifreach1(true, x, y, edge(u, v, i), h) -> ifreach2(eq(y, v), x, y, edge(u, v, i), h)
ifreach1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h))
ifreach2(true, x, y, edge(u, v, i), h) -> true
ifreach2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
two new Dependency Pairs are created:
IFREACH2(false, x, y, edge(u, v, i), h) -> REACH(v, y, union(i, h), empty)
IFREACH2(false, x, y, edge(u, v, empty), h'') -> REACH(v, y, h'', empty)
IFREACH2(false, x, y, edge(u, v, edge(x'', y'', i'')), h'') -> REACH(v, y, edge(x'', y'', union(i'', h'')), empty)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Polynomial Ordering
IFREACH2(false, x, y, edge(u, v, edge(x'', y'', i'')), h'') -> REACH(v, y, edge(x'', y'', union(i'', h'')), empty)
IFREACH2(false, x, y, edge(u, v, empty), h'') -> REACH(v, y, h'', empty)
IFREACH2(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, h)
IFREACH1(true, x, y, edge(u, v, i), h) -> IFREACH2(eq(y, v), x, y, edge(u, v, i), h)
REACH(x, y, edge(u, v, i), h) -> IFREACH1(eq(x, u), x, y, edge(u, v, i), h)
IFREACH1(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, edge(u, v, h))
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
or(true, y) -> true
or(false, y) -> y
union(empty, h) -> h
union(edge(x, y, i), h) -> edge(x, y, union(i, h))
reach(x, y, empty, h) -> false
reach(x, y, edge(u, v, i), h) -> ifreach1(eq(x, u), x, y, edge(u, v, i), h)
ifreach1(true, x, y, edge(u, v, i), h) -> ifreach2(eq(y, v), x, y, edge(u, v, i), h)
ifreach1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h))
ifreach2(true, x, y, edge(u, v, i), h) -> true
ifreach2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
IFREACH2(false, x, y, edge(u, v, edge(x'', y'', i'')), h'') -> REACH(v, y, edge(x'', y'', union(i'', h'')), empty)
IFREACH2(false, x, y, edge(u, v, empty), h'') -> REACH(v, y, h'', empty)
IFREACH2(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, h)
union(empty, h) -> h
union(edge(x, y, i), h) -> edge(x, y, union(i, h))
POL(edge(x1, x2, x3)) = 1 + x3 POL(eq(x1, x2)) = 0 POL(0) = 0 POL(false) = 0 POL(union(x1, x2)) = x1 + x2 POL(IF_REACH_2(x1, x2, x3, x4, x5)) = x4 + x5 POL(REACH(x1, x2, x3, x4)) = x3 + x4 POL(true) = 0 POL(s(x1)) = 0 POL(empty) = 0 POL(IF_REACH_1(x1, x2, x3, x4, x5)) = x4 + x5
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Polo
...
→DP Problem 7
↳Dependency Graph
IFREACH1(true, x, y, edge(u, v, i), h) -> IFREACH2(eq(y, v), x, y, edge(u, v, i), h)
REACH(x, y, edge(u, v, i), h) -> IFREACH1(eq(x, u), x, y, edge(u, v, i), h)
IFREACH1(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, edge(u, v, h))
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
or(true, y) -> true
or(false, y) -> y
union(empty, h) -> h
union(edge(x, y, i), h) -> edge(x, y, union(i, h))
reach(x, y, empty, h) -> false
reach(x, y, edge(u, v, i), h) -> ifreach1(eq(x, u), x, y, edge(u, v, i), h)
ifreach1(true, x, y, edge(u, v, i), h) -> ifreach2(eq(y, v), x, y, edge(u, v, i), h)
ifreach1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h))
ifreach2(true, x, y, edge(u, v, i), h) -> true
ifreach2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Polo
...
→DP Problem 8
↳Instantiation Transformation
IFREACH1(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, edge(u, v, h))
REACH(x, y, edge(u, v, i), h) -> IFREACH1(eq(x, u), x, y, edge(u, v, i), h)
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
or(true, y) -> true
or(false, y) -> y
union(empty, h) -> h
union(edge(x, y, i), h) -> edge(x, y, union(i, h))
reach(x, y, empty, h) -> false
reach(x, y, edge(u, v, i), h) -> ifreach1(eq(x, u), x, y, edge(u, v, i), h)
ifreach1(true, x, y, edge(u, v, i), h) -> ifreach2(eq(y, v), x, y, edge(u, v, i), h)
ifreach1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h))
ifreach2(true, x, y, edge(u, v, i), h) -> true
ifreach2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
one new Dependency Pair is created:
REACH(x, y, edge(u, v, i), h) -> IFREACH1(eq(x, u), x, y, edge(u, v, i), h)
REACH(x'', y'', edge(u'', v0, i''), edge(u''', v'', h'')) -> IFREACH1(eq(x'', u''), x'', y'', edge(u'', v0, i''), edge(u''', v'', h''))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Polo
...
→DP Problem 9
↳Instantiation Transformation
REACH(x'', y'', edge(u'', v0, i''), edge(u''', v'', h'')) -> IFREACH1(eq(x'', u''), x'', y'', edge(u'', v0, i''), edge(u''', v'', h''))
IFREACH1(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, edge(u, v, h))
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
or(true, y) -> true
or(false, y) -> y
union(empty, h) -> h
union(edge(x, y, i), h) -> edge(x, y, union(i, h))
reach(x, y, empty, h) -> false
reach(x, y, edge(u, v, i), h) -> ifreach1(eq(x, u), x, y, edge(u, v, i), h)
ifreach1(true, x, y, edge(u, v, i), h) -> ifreach2(eq(y, v), x, y, edge(u, v, i), h)
ifreach1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h))
ifreach2(true, x, y, edge(u, v, i), h) -> true
ifreach2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
one new Dependency Pair is created:
IFREACH1(false, x, y, edge(u, v, i), h) -> REACH(x, y, i, edge(u, v, h))
IFREACH1(false, x', y', edge(u', v', i'), edge(u'''''', v'''', h'''')) -> REACH(x', y', i', edge(u', v', edge(u'''''', v'''', h'''')))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Polo
...
→DP Problem 10
↳Instantiation Transformation
IFREACH1(false, x', y', edge(u', v', i'), edge(u'''''', v'''', h'''')) -> REACH(x', y', i', edge(u', v', edge(u'''''', v'''', h'''')))
REACH(x'', y'', edge(u'', v0, i''), edge(u''', v'', h'')) -> IFREACH1(eq(x'', u''), x'', y'', edge(u'', v0, i''), edge(u''', v'', h''))
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
or(true, y) -> true
or(false, y) -> y
union(empty, h) -> h
union(edge(x, y, i), h) -> edge(x, y, union(i, h))
reach(x, y, empty, h) -> false
reach(x, y, edge(u, v, i), h) -> ifreach1(eq(x, u), x, y, edge(u, v, i), h)
ifreach1(true, x, y, edge(u, v, i), h) -> ifreach2(eq(y, v), x, y, edge(u, v, i), h)
ifreach1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h))
ifreach2(true, x, y, edge(u, v, i), h) -> true
ifreach2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
one new Dependency Pair is created:
REACH(x'', y'', edge(u'', v0, i''), edge(u''', v'', h'')) -> IFREACH1(eq(x'', u''), x'', y'', edge(u'', v0, i''), edge(u''', v'', h''))
REACH(x'''', y'''', edge(u''0, v0', i''''), edge(u'''', v'''', edge(u'''''''', v'''''', h''''''))) -> IFREACH1(eq(x'''', u''0), x'''', y'''', edge(u''0, v0', i''''), edge(u'''', v'''', edge(u'''''''', v'''''', h'''''')))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Polo
...
→DP Problem 11
↳Instantiation Transformation
REACH(x'''', y'''', edge(u''0, v0', i''''), edge(u'''', v'''', edge(u'''''''', v'''''', h''''''))) -> IFREACH1(eq(x'''', u''0), x'''', y'''', edge(u''0, v0', i''''), edge(u'''', v'''', edge(u'''''''', v'''''', h'''''')))
IFREACH1(false, x', y', edge(u', v', i'), edge(u'''''', v'''', h'''')) -> REACH(x', y', i', edge(u', v', edge(u'''''', v'''', h'''')))
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
or(true, y) -> true
or(false, y) -> y
union(empty, h) -> h
union(edge(x, y, i), h) -> edge(x, y, union(i, h))
reach(x, y, empty, h) -> false
reach(x, y, edge(u, v, i), h) -> ifreach1(eq(x, u), x, y, edge(u, v, i), h)
ifreach1(true, x, y, edge(u, v, i), h) -> ifreach2(eq(y, v), x, y, edge(u, v, i), h)
ifreach1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h))
ifreach2(true, x, y, edge(u, v, i), h) -> true
ifreach2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
one new Dependency Pair is created:
IFREACH1(false, x', y', edge(u', v', i'), edge(u'''''', v'''', h'''')) -> REACH(x', y', i', edge(u', v', edge(u'''''', v'''', h'''')))
IFREACH1(false, x''', y'', edge(u'', v'', i''), edge(u''''''', v'''''', edge(u'''''''''', v'''''''', h''''''''))) -> REACH(x''', y'', i'', edge(u'', v'', edge(u''''''', v'''''', edge(u'''''''''', v'''''''', h''''''''))))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Polo
...
→DP Problem 12
↳Polynomial Ordering
IFREACH1(false, x''', y'', edge(u'', v'', i''), edge(u''''''', v'''''', edge(u'''''''''', v'''''''', h''''''''))) -> REACH(x''', y'', i'', edge(u'', v'', edge(u''''''', v'''''', edge(u'''''''''', v'''''''', h''''''''))))
REACH(x'''', y'''', edge(u''0, v0', i''''), edge(u'''', v'''', edge(u'''''''', v'''''', h''''''))) -> IFREACH1(eq(x'''', u''0), x'''', y'''', edge(u''0, v0', i''''), edge(u'''', v'''', edge(u'''''''', v'''''', h'''''')))
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
or(true, y) -> true
or(false, y) -> y
union(empty, h) -> h
union(edge(x, y, i), h) -> edge(x, y, union(i, h))
reach(x, y, empty, h) -> false
reach(x, y, edge(u, v, i), h) -> ifreach1(eq(x, u), x, y, edge(u, v, i), h)
ifreach1(true, x, y, edge(u, v, i), h) -> ifreach2(eq(y, v), x, y, edge(u, v, i), h)
ifreach1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h))
ifreach2(true, x, y, edge(u, v, i), h) -> true
ifreach2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty))
IFREACH1(false, x''', y'', edge(u'', v'', i''), edge(u''''''', v'''''', edge(u'''''''''', v'''''''', h''''''''))) -> REACH(x''', y'', i'', edge(u'', v'', edge(u''''''', v'''''', edge(u'''''''''', v'''''''', h''''''''))))
POL(edge(x1, x2, x3)) = 1 + x3 POL(eq(x1, x2)) = 0 POL(0) = 0 POL(false) = 0 POL(REACH(x1, x2, x3, x4)) = x3 POL(true) = 0 POL(s(x1)) = 0 POL(IF_REACH_1(x1, x2, x3, x4, x5)) = x4
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Polo
...
→DP Problem 13
↳Dependency Graph
REACH(x'''', y'''', edge(u''0, v0', i''''), edge(u'''', v'''', edge(u'''''''', v'''''', h''''''))) -> IFREACH1(eq(x'''', u''0), x'''', y'''', edge(u''0, v0', i''''), edge(u'''', v'''', edge(u'''''''', v'''''', h'''''')))
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
or(true, y) -> true
or(false, y) -> y
union(empty, h) -> h
union(edge(x, y, i), h) -> edge(x, y, union(i, h))
reach(x, y, empty, h) -> false
reach(x, y, edge(u, v, i), h) -> ifreach1(eq(x, u), x, y, edge(u, v, i), h)
ifreach1(true, x, y, edge(u, v, i), h) -> ifreach2(eq(y, v), x, y, edge(u, v, i), h)
ifreach1(false, x, y, edge(u, v, i), h) -> reach(x, y, i, edge(u, v, h))
ifreach2(true, x, y, edge(u, v, i), h) -> true
ifreach2(false, x, y, edge(u, v, i), h) -> or(reach(x, y, i, h), reach(v, y, union(i, h), empty))