R
↳Dependency Pair Analysis
APP(add(n, x), y) -> APP(x, y)
REVERSE(add(n, x)) -> APP(reverse(x), add(n, nil))
REVERSE(add(n, x)) -> REVERSE(x)
SHUFFLE(add(n, x)) -> SHUFFLE(reverse(x))
SHUFFLE(add(n, x)) -> REVERSE(x)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
APP(add(n, x), y) -> APP(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
APP(add(n, x), y) -> APP(x, y)
POL(APP(x1, x2)) = x1 POL(add(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Nar
REVERSE(add(n, x)) -> REVERSE(x)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
REVERSE(add(n, x)) -> REVERSE(x)
POL(REVERSE(x1)) = x1 POL(add(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 5
↳Dependency Graph
→DP Problem 3
↳Nar
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Narrowing Transformation
SHUFFLE(add(n, x)) -> SHUFFLE(reverse(x))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
two new Dependency Pairs are created:
SHUFFLE(add(n, x)) -> SHUFFLE(reverse(x))
SHUFFLE(add(n, nil)) -> SHUFFLE(nil)
SHUFFLE(add(n, add(n'', x''))) -> SHUFFLE(app(reverse(x''), add(n'', nil)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Narrowing Transformation
SHUFFLE(add(n, add(n'', x''))) -> SHUFFLE(app(reverse(x''), add(n'', nil)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
two new Dependency Pairs are created:
SHUFFLE(add(n, add(n'', x''))) -> SHUFFLE(app(reverse(x''), add(n'', nil)))
SHUFFLE(add(n, add(n'', nil))) -> SHUFFLE(app(nil, add(n'', nil)))
SHUFFLE(add(n, add(n'', add(n''', x')))) -> SHUFFLE(app(app(reverse(x'), add(n''', nil)), add(n'', nil)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 7
↳Polynomial Ordering
SHUFFLE(add(n, add(n'', add(n''', x')))) -> SHUFFLE(app(app(reverse(x'), add(n''', nil)), add(n'', nil)))
SHUFFLE(add(n, add(n'', nil))) -> SHUFFLE(app(nil, add(n'', nil)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))
SHUFFLE(add(n, add(n'', add(n''', x')))) -> SHUFFLE(app(app(reverse(x'), add(n''', nil)), add(n'', nil)))
SHUFFLE(add(n, add(n'', nil))) -> SHUFFLE(app(nil, add(n'', nil)))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
POL(reverse(x1)) = x1 POL(SHUFFLE(x1)) = 1 + x1 POL(nil) = 0 POL(app(x1, x2)) = x1 + x2 POL(add(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 8
↳Dependency Graph
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))