Term Rewriting System R:
[y, n, x]
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))

Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

APP(add(n, x), y) -> APP(x, y)
REVERSE(add(n, x)) -> APP(reverse(x), add(n, nil))
REVERSE(add(n, x)) -> REVERSE(x)
SHUFFLE(add(n, x)) -> SHUFFLE(reverse(x))
SHUFFLE(add(n, x)) -> REVERSE(x)

Furthermore, R contains three SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

APP(add(n, x), y) -> APP(x, y)

Rules:

app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))

The following dependency pair can be strictly oriented:

APP(add(n, x), y) -> APP(x, y)

There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
APP(x1, x2) -> APP(x1, x2)
add(x1, x2) -> add(x1, x2)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`           →DP Problem 4`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

Rules:

app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳Argument Filtering and Ordering`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

REVERSE(add(n, x)) -> REVERSE(x)

Rules:

app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))

The following dependency pair can be strictly oriented:

REVERSE(add(n, x)) -> REVERSE(x)

There are no usable rules using the Ce-refinement that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
REVERSE(x1) -> REVERSE(x1)
add(x1, x2) -> add(x1, x2)

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`           →DP Problem 5`
`             ↳Dependency Graph`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

Rules:

app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳AFS`
`       →DP Problem 2`
`         ↳AFS`
`       →DP Problem 3`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
Dependency Pair:

SHUFFLE(add(n, x)) -> SHUFFLE(reverse(x))

Rules:

app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
reverse(nil) -> nil
reverse(add(n, x)) -> app(reverse(x), add(n, nil))
shuffle(nil) -> nil
shuffle(add(n, x)) -> add(n, shuffle(reverse(x)))

Termination of R could not be shown.
Duration:
0:00 minutes