R
↳Dependency Pair Analysis
EQ(s(x), s(y)) -> EQ(x, y)
LE(s(x), s(y)) -> LE(x, y)
APP(add(n, x), y) -> APP(x, y)
MIN(add(n, add(m, x))) -> IFMIN(le(n, m), add(n, add(m, x)))
MIN(add(n, add(m, x))) -> LE(n, m)
IFMIN(true, add(n, add(m, x))) -> MIN(add(n, x))
IFMIN(false, add(n, add(m, x))) -> MIN(add(m, x))
RM(n, add(m, x)) -> IFRM(eq(n, m), n, add(m, x))
RM(n, add(m, x)) -> EQ(n, m)
IFRM(true, n, add(m, x)) -> RM(n, x)
IFRM(false, n, add(m, x)) -> RM(n, x)
MINSORT(add(n, x), y) -> IFMINSORT(eq(n, min(add(n, x))), add(n, x), y)
MINSORT(add(n, x), y) -> EQ(n, min(add(n, x)))
MINSORT(add(n, x), y) -> MIN(add(n, x))
IFMINSORT(true, add(n, x), y) -> MINSORT(app(rm(n, x), y), nil)
IFMINSORT(true, add(n, x), y) -> APP(rm(n, x), y)
IFMINSORT(true, add(n, x), y) -> RM(n, x)
IFMINSORT(false, add(n, x), y) -> MINSORT(x, add(n, y))
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
EQ(s(x), s(y)) -> EQ(x, y)
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
EQ(s(x), s(y)) -> EQ(x, y)
POL(EQ(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
LE(s(x), s(y)) -> LE(x, y)
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
LE(s(x), s(y)) -> LE(x, y)
POL(LE(x1, x2)) = x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 8
↳Dependency Graph
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polynomial Ordering
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
APP(add(n, x), y) -> APP(x, y)
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
APP(add(n, x), y) -> APP(x, y)
POL(APP(x1, x2)) = x1 POL(add(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 9
↳Dependency Graph
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polynomial Ordering
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
IFRM(false, n, add(m, x)) -> RM(n, x)
IFRM(true, n, add(m, x)) -> RM(n, x)
RM(n, add(m, x)) -> IFRM(eq(n, m), n, add(m, x))
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
IFRM(false, n, add(m, x)) -> RM(n, x)
IFRM(true, n, add(m, x)) -> RM(n, x)
POL(IF_RM(x1, x2, x3)) = x3 POL(eq(x1, x2)) = 0 POL(0) = 0 POL(false) = 0 POL(true) = 0 POL(s(x1)) = 0 POL(RM(x1, x2)) = x2 POL(add(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 10
↳Dependency Graph
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
RM(n, add(m, x)) -> IFRM(eq(n, m), n, add(m, x))
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polynomial Ordering
→DP Problem 6
↳Nar
IFMIN(false, add(n, add(m, x))) -> MIN(add(m, x))
IFMIN(true, add(n, add(m, x))) -> MIN(add(n, x))
MIN(add(n, add(m, x))) -> IFMIN(le(n, m), add(n, add(m, x)))
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
IFMIN(false, add(n, add(m, x))) -> MIN(add(m, x))
IFMIN(true, add(n, add(m, x))) -> MIN(add(n, x))
POL(0) = 0 POL(false) = 0 POL(MIN(x1)) = x1 POL(true) = 0 POL(s(x1)) = 0 POL(IF_MIN(x1, x2)) = x2 POL(le(x1, x2)) = 0 POL(add(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 11
↳Dependency Graph
→DP Problem 6
↳Nar
MIN(add(n, add(m, x))) -> IFMIN(le(n, m), add(n, add(m, x)))
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Narrowing Transformation
IFMINSORT(false, add(n, x), y) -> MINSORT(x, add(n, y))
IFMINSORT(true, add(n, x), y) -> MINSORT(app(rm(n, x), y), nil)
MINSORT(add(n, x), y) -> IFMINSORT(eq(n, min(add(n, x))), add(n, x), y)
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
two new Dependency Pairs are created:
IFMINSORT(true, add(n, x), y) -> MINSORT(app(rm(n, x), y), nil)
IFMINSORT(true, add(n'', nil), y) -> MINSORT(app(nil, y), nil)
IFMINSORT(true, add(n'', add(m', x'')), y) -> MINSORT(app(ifrm(eq(n'', m'), n'', add(m', x'')), y), nil)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
→DP Problem 12
↳Narrowing Transformation
IFMINSORT(true, add(n'', add(m', x'')), y) -> MINSORT(app(ifrm(eq(n'', m'), n'', add(m', x'')), y), nil)
IFMINSORT(true, add(n'', nil), y) -> MINSORT(app(nil, y), nil)
MINSORT(add(n, x), y) -> IFMINSORT(eq(n, min(add(n, x))), add(n, x), y)
IFMINSORT(false, add(n, x), y) -> MINSORT(x, add(n, y))
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
one new Dependency Pair is created:
IFMINSORT(true, add(n'', nil), y) -> MINSORT(app(nil, y), nil)
IFMINSORT(true, add(n'', nil), y'') -> MINSORT(y'', nil)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 13
↳Instantiation Transformation
IFMINSORT(true, add(n'', nil), y'') -> MINSORT(y'', nil)
IFMINSORT(false, add(n, x), y) -> MINSORT(x, add(n, y))
MINSORT(add(n, x), y) -> IFMINSORT(eq(n, min(add(n, x))), add(n, x), y)
IFMINSORT(true, add(n'', add(m', x'')), y) -> MINSORT(app(ifrm(eq(n'', m'), n'', add(m', x'')), y), nil)
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
two new Dependency Pairs are created:
MINSORT(add(n, x), y) -> IFMINSORT(eq(n, min(add(n, x))), add(n, x), y)
MINSORT(add(n'', x''), add(n''', y'')) -> IFMINSORT(eq(n'', min(add(n'', x''))), add(n'', x''), add(n''', y''))
MINSORT(add(n', x'), nil) -> IFMINSORT(eq(n', min(add(n', x'))), add(n', x'), nil)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 14
↳Instantiation Transformation
IFMINSORT(true, add(n'', add(m', x'')), y) -> MINSORT(app(ifrm(eq(n'', m'), n'', add(m', x'')), y), nil)
MINSORT(add(n'', x''), add(n''', y'')) -> IFMINSORT(eq(n'', min(add(n'', x''))), add(n'', x''), add(n''', y''))
IFMINSORT(false, add(n, x), y) -> MINSORT(x, add(n, y))
MINSORT(add(n', x'), nil) -> IFMINSORT(eq(n', min(add(n', x'))), add(n', x'), nil)
IFMINSORT(true, add(n'', nil), y'') -> MINSORT(y'', nil)
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
two new Dependency Pairs are created:
IFMINSORT(false, add(n, x), y) -> MINSORT(x, add(n, y))
IFMINSORT(false, add(n', x'), add(n'''''', y'''')) -> MINSORT(x', add(n', add(n'''''', y'''')))
IFMINSORT(false, add(n', x'), nil) -> MINSORT(x', add(n', nil))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 15
↳Instantiation Transformation
IFMINSORT(false, add(n', x'), add(n'''''', y'''')) -> MINSORT(x', add(n', add(n'''''', y'''')))
MINSORT(add(n'', x''), add(n''', y'')) -> IFMINSORT(eq(n'', min(add(n'', x''))), add(n'', x''), add(n''', y''))
IFMINSORT(false, add(n', x'), nil) -> MINSORT(x', add(n', nil))
IFMINSORT(true, add(n'', nil), y'') -> MINSORT(y'', nil)
MINSORT(add(n', x'), nil) -> IFMINSORT(eq(n', min(add(n', x'))), add(n', x'), nil)
IFMINSORT(true, add(n'', add(m', x'')), y) -> MINSORT(app(ifrm(eq(n'', m'), n'', add(m', x'')), y), nil)
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
two new Dependency Pairs are created:
IFMINSORT(true, add(n'', add(m', x'')), y) -> MINSORT(app(ifrm(eq(n'', m'), n'', add(m', x'')), y), nil)
IFMINSORT(true, add(n''', add(m'', x'''')), add(n'''''', y'''')) -> MINSORT(app(ifrm(eq(n''', m''), n''', add(m'', x'''')), add(n'''''', y'''')), nil)
IFMINSORT(true, add(n'''', add(m'', x'''')), nil) -> MINSORT(app(ifrm(eq(n'''', m''), n'''', add(m'', x'''')), nil), nil)
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 16
↳Instantiation Transformation
IFMINSORT(true, add(n''', add(m'', x'''')), add(n'''''', y'''')) -> MINSORT(app(ifrm(eq(n''', m''), n''', add(m'', x'''')), add(n'''''', y'''')), nil)
IFMINSORT(true, add(n'''', add(m'', x'''')), nil) -> MINSORT(app(ifrm(eq(n'''', m''), n'''', add(m'', x'''')), nil), nil)
IFMINSORT(false, add(n', x'), nil) -> MINSORT(x', add(n', nil))
MINSORT(add(n', x'), nil) -> IFMINSORT(eq(n', min(add(n', x'))), add(n', x'), nil)
IFMINSORT(true, add(n'', nil), y'') -> MINSORT(y'', nil)
MINSORT(add(n'', x''), add(n''', y'')) -> IFMINSORT(eq(n'', min(add(n'', x''))), add(n'', x''), add(n''', y''))
IFMINSORT(false, add(n', x'), add(n'''''', y'''')) -> MINSORT(x', add(n', add(n'''''', y'''')))
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
two new Dependency Pairs are created:
MINSORT(add(n'', x''), add(n''', y'')) -> IFMINSORT(eq(n'', min(add(n'', x''))), add(n'', x''), add(n''', y''))
MINSORT(add(n'''', x''''), add(n''''', add(n'''''''', y''''''))) -> IFMINSORT(eq(n'''', min(add(n'''', x''''))), add(n'''', x''''), add(n''''', add(n'''''''', y'''''')))
MINSORT(add(n'''', x''''), add(n''''', nil)) -> IFMINSORT(eq(n'''', min(add(n'''', x''''))), add(n'''', x''''), add(n''''', nil))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 17
↳Instantiation Transformation
IFMINSORT(true, add(n'''', add(m'', x'''')), nil) -> MINSORT(app(ifrm(eq(n'''', m''), n'''', add(m'', x'''')), nil), nil)
MINSORT(add(n'''', x''''), add(n''''', add(n'''''''', y''''''))) -> IFMINSORT(eq(n'''', min(add(n'''', x''''))), add(n'''', x''''), add(n''''', add(n'''''''', y'''''')))
IFMINSORT(false, add(n', x'), add(n'''''', y'''')) -> MINSORT(x', add(n', add(n'''''', y'''')))
MINSORT(add(n'''', x''''), add(n''''', nil)) -> IFMINSORT(eq(n'''', min(add(n'''', x''''))), add(n'''', x''''), add(n''''', nil))
IFMINSORT(false, add(n', x'), nil) -> MINSORT(x', add(n', nil))
IFMINSORT(true, add(n'', nil), y'') -> MINSORT(y'', nil)
MINSORT(add(n', x'), nil) -> IFMINSORT(eq(n', min(add(n', x'))), add(n', x'), nil)
IFMINSORT(true, add(n''', add(m'', x'''')), add(n'''''', y'''')) -> MINSORT(app(ifrm(eq(n''', m''), n''', add(m'', x'''')), add(n'''''', y'''')), nil)
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
two new Dependency Pairs are created:
IFMINSORT(false, add(n', x'), add(n'''''', y'''')) -> MINSORT(x', add(n', add(n'''''', y'''')))
IFMINSORT(false, add(n'', x'''), add(n'''''''', add(n'''''''''', y''''''''))) -> MINSORT(x''', add(n'', add(n'''''''', add(n'''''''''', y''''''''))))
IFMINSORT(false, add(n'', x'''), add(n'''''''', nil)) -> MINSORT(x''', add(n'', add(n'''''''', nil)))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 18
↳Polynomial Ordering
IFMINSORT(false, add(n'', x'''), add(n'''''''', add(n'''''''''', y''''''''))) -> MINSORT(x''', add(n'', add(n'''''''', add(n'''''''''', y''''''''))))
MINSORT(add(n'''', x''''), add(n''''', add(n'''''''', y''''''))) -> IFMINSORT(eq(n'''', min(add(n'''', x''''))), add(n'''', x''''), add(n''''', add(n'''''''', y'''''')))
IFMINSORT(false, add(n'', x'''), add(n'''''''', nil)) -> MINSORT(x''', add(n'', add(n'''''''', nil)))
IFMINSORT(true, add(n''', add(m'', x'''')), add(n'''''', y'''')) -> MINSORT(app(ifrm(eq(n''', m''), n''', add(m'', x'''')), add(n'''''', y'''')), nil)
MINSORT(add(n'''', x''''), add(n''''', nil)) -> IFMINSORT(eq(n'''', min(add(n'''', x''''))), add(n'''', x''''), add(n''''', nil))
IFMINSORT(false, add(n', x'), nil) -> MINSORT(x', add(n', nil))
IFMINSORT(true, add(n'', nil), y'') -> MINSORT(y'', nil)
MINSORT(add(n', x'), nil) -> IFMINSORT(eq(n', min(add(n', x'))), add(n', x'), nil)
IFMINSORT(true, add(n'''', add(m'', x'''')), nil) -> MINSORT(app(ifrm(eq(n'''', m''), n'''', add(m'', x'''')), nil), nil)
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
IFMINSORT(true, add(n''', add(m'', x'''')), add(n'''''', y'''')) -> MINSORT(app(ifrm(eq(n''', m''), n''', add(m'', x'''')), add(n'''''', y'''')), nil)
IFMINSORT(true, add(n'', nil), y'') -> MINSORT(y'', nil)
IFMINSORT(true, add(n'''', add(m'', x'''')), nil) -> MINSORT(app(ifrm(eq(n'''', m''), n'''', add(m'', x'''')), nil), nil)
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
POL(false) = 0 POL(if_rm(x1, x2, x3)) = x3 POL(true) = 0 POL(rm(x1, x2)) = x2 POL(MINSORT(x1, x2)) = x1 + x2 POL(if_min(x1, x2)) = 0 POL(add(x1, x2)) = 1 + x2 POL(IF_MINSORT(x1, x2, x3)) = x2 + x3 POL(eq(x1, x2)) = 0 POL(0) = 0 POL(min(x1)) = 0 POL(nil) = 0 POL(s(x1)) = 0 POL(le(x1, x2)) = 0 POL(app(x1, x2)) = x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 19
↳Dependency Graph
IFMINSORT(false, add(n'', x'''), add(n'''''''', add(n'''''''''', y''''''''))) -> MINSORT(x''', add(n'', add(n'''''''', add(n'''''''''', y''''''''))))
MINSORT(add(n'''', x''''), add(n''''', add(n'''''''', y''''''))) -> IFMINSORT(eq(n'''', min(add(n'''', x''''))), add(n'''', x''''), add(n''''', add(n'''''''', y'''''')))
IFMINSORT(false, add(n'', x'''), add(n'''''''', nil)) -> MINSORT(x''', add(n'', add(n'''''''', nil)))
MINSORT(add(n'''', x''''), add(n''''', nil)) -> IFMINSORT(eq(n'''', min(add(n'''', x''''))), add(n'''', x''''), add(n''''', nil))
IFMINSORT(false, add(n', x'), nil) -> MINSORT(x', add(n', nil))
MINSORT(add(n', x'), nil) -> IFMINSORT(eq(n', min(add(n', x'))), add(n', x'), nil)
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 20
↳Polynomial Ordering
MINSORT(add(n'''', x''''), add(n''''', add(n'''''''', y''''''))) -> IFMINSORT(eq(n'''', min(add(n'''', x''''))), add(n'''', x''''), add(n''''', add(n'''''''', y'''''')))
IFMINSORT(false, add(n'', x'''), add(n'''''''', add(n'''''''''', y''''''''))) -> MINSORT(x''', add(n'', add(n'''''''', add(n'''''''''', y''''''''))))
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))
IFMINSORT(false, add(n'', x'''), add(n'''''''', add(n'''''''''', y''''''''))) -> MINSORT(x''', add(n'', add(n'''''''', add(n'''''''''', y''''''''))))
POL(IF_MINSORT(x1, x2, x3)) = x2 POL(eq(x1, x2)) = 0 POL(0) = 0 POL(false) = 0 POL(true) = 0 POL(min(x1)) = 0 POL(nil) = 0 POL(s(x1)) = 0 POL(MINSORT(x1, x2)) = x1 POL(le(x1, x2)) = 0 POL(if_min(x1, x2)) = 0 POL(add(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
→DP Problem 3
↳Polo
→DP Problem 4
↳Polo
→DP Problem 5
↳Polo
→DP Problem 6
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 21
↳Dependency Graph
MINSORT(add(n'''', x''''), add(n''''', add(n'''''''', y''''''))) -> IFMINSORT(eq(n'''', min(add(n'''', x''''))), add(n'''', x''''), add(n''''', add(n'''''''', y'''''')))
eq(0, 0) -> true
eq(0, s(x)) -> false
eq(s(x), 0) -> false
eq(s(x), s(y)) -> eq(x, y)
le(0, y) -> true
le(s(x), 0) -> false
le(s(x), s(y)) -> le(x, y)
app(nil, y) -> y
app(add(n, x), y) -> add(n, app(x, y))
min(add(n, nil)) -> n
min(add(n, add(m, x))) -> ifmin(le(n, m), add(n, add(m, x)))
ifmin(true, add(n, add(m, x))) -> min(add(n, x))
ifmin(false, add(n, add(m, x))) -> min(add(m, x))
rm(n, nil) -> nil
rm(n, add(m, x)) -> ifrm(eq(n, m), n, add(m, x))
ifrm(true, n, add(m, x)) -> rm(n, x)
ifrm(false, n, add(m, x)) -> add(m, rm(n, x))
minsort(nil, nil) -> nil
minsort(add(n, x), y) -> ifminsort(eq(n, min(add(n, x))), add(n, x), y)
ifminsort(true, add(n, x), y) -> add(n, minsort(app(rm(n, x), y), nil))
ifminsort(false, add(n, x), y) -> minsort(x, add(n, y))