R
↳Dependency Pair Analysis
F(f(x)) -> F(g(f(x), x))
F(f(x)) -> G(f(x), x)
F(f(x)) -> F(h(f(x), f(x)))
F(f(x)) -> H(f(x), f(x))
H(x, x) -> G(x, 0)
R
↳DPs
→DP Problem 1
↳Argument Filtering and Ordering
F(f(x)) -> F(h(f(x), f(x)))
F(f(x)) -> F(g(f(x), x))
f(f(x)) -> f(g(f(x), x))
f(f(x)) -> f(h(f(x), f(x)))
g(x, y) -> y
h(x, x) -> g(x, 0)
innermost
F(f(x)) -> F(g(f(x), x))
g(x, y) -> y
h(x, x) -> g(x, 0)
f(f(x)) -> f(g(f(x), x))
f(f(x)) -> f(h(f(x), f(x)))
POL(0) = 0 POL(F(x1)) = x1 POL(f(x1)) = 1 + x1
F(x1) -> F(x1)
f(x1) -> f(x1)
g(x1, x2) -> x2
h(x1, x2) -> x1
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳Argument Filtering and Ordering
F(f(x)) -> F(h(f(x), f(x)))
f(f(x)) -> f(g(f(x), x))
f(f(x)) -> f(h(f(x), f(x)))
g(x, y) -> y
h(x, x) -> g(x, 0)
innermost
F(f(x)) -> F(h(f(x), f(x)))
h(x, x) -> g(x, 0)
g(x, y) -> y
POL(0) = 0 POL(h) = 0 POL(F(x1)) = x1 POL(f(x1)) = 1 + x1
F(x1) -> F(x1)
f(x1) -> f(x1)
h(x1, x2) -> h
g(x1, x2) -> x2
R
↳DPs
→DP Problem 1
↳AFS
→DP Problem 2
↳AFS
...
→DP Problem 3
↳Dependency Graph
f(f(x)) -> f(g(f(x), x))
f(f(x)) -> f(h(f(x), f(x)))
g(x, y) -> y
h(x, x) -> g(x, 0)
innermost