R
↳Dependency Pair Analysis
F(f(x)) -> F(g(f(x), x))
F(f(x)) -> G(f(x), x)
F(f(x)) -> F(h(f(x), f(x)))
F(f(x)) -> H(f(x), f(x))
H(x, x) -> G(x, 0)
R
↳DPs
→DP Problem 1
↳Narrowing Transformation
F(f(x)) -> F(h(f(x), f(x)))
F(f(x)) -> F(g(f(x), x))
f(f(x)) -> f(g(f(x), x))
f(f(x)) -> f(h(f(x), f(x)))
g(x, y) -> y
h(x, x) -> g(x, 0)
innermost
one new Dependency Pair is created:
F(f(x)) -> F(g(f(x), x))
F(f(x'')) -> F(x'')
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Narrowing Transformation
F(f(x)) -> F(h(f(x), f(x)))
f(f(x)) -> f(g(f(x), x))
f(f(x)) -> f(h(f(x), f(x)))
g(x, y) -> y
h(x, x) -> g(x, 0)
innermost
one new Dependency Pair is created:
F(f(x)) -> F(h(f(x), f(x)))
F(f(x'')) -> F(g(f(x''), 0))
R
↳DPs
→DP Problem 1
↳Nar
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Narrowing Transformation
F(f(x'')) -> F(g(f(x''), 0))
f(f(x)) -> f(g(f(x), x))
f(f(x)) -> f(h(f(x), f(x)))
g(x, y) -> y
h(x, x) -> g(x, 0)
innermost
one new Dependency Pair is created:
F(f(x'')) -> F(g(f(x''), 0))
F(f(x''')) -> F(0)