R
↳Dependency Pair Analysis
MAX(N(L(s(x)), L(s(y)))) -> MAX(N(L(x), L(y)))
MAX(N(L(x), N(y, z))) -> MAX(N(L(x), L(max(N(y, z)))))
MAX(N(L(x), N(y, z))) -> MAX(N(y, z))
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
MAX(N(L(s(x)), L(s(y)))) -> MAX(N(L(x), L(y)))
max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
innermost
one new Dependency Pair is created:
MAX(N(L(s(x)), L(s(y)))) -> MAX(N(L(x), L(y)))
MAX(N(L(s(s(x''))), L(s(s(y''))))) -> MAX(N(L(s(x'')), L(s(y''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
MAX(N(L(s(s(x''))), L(s(s(y''))))) -> MAX(N(L(s(x'')), L(s(y''))))
max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
innermost
one new Dependency Pair is created:
MAX(N(L(s(s(x''))), L(s(s(y''))))) -> MAX(N(L(s(x'')), L(s(y''))))
MAX(N(L(s(s(s(x'''')))), L(s(s(s(y'''')))))) -> MAX(N(L(s(s(x''''))), L(s(s(y'''')))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
MAX(N(L(s(s(s(x'''')))), L(s(s(s(y'''')))))) -> MAX(N(L(s(s(x''''))), L(s(s(y'''')))))
max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
innermost
MAX(N(L(s(s(s(x'''')))), L(s(s(s(y'''')))))) -> MAX(N(L(s(s(x''''))), L(s(s(y'''')))))
POL(MAX(x1)) = 1 + x1 POL(L(x1)) = x1 POL(N(x1, x2)) = 1 + x2 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳FwdInst
max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
MAX(N(L(x), N(y, z))) -> MAX(N(y, z))
max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
innermost
one new Dependency Pair is created:
MAX(N(L(x), N(y, z))) -> MAX(N(y, z))
MAX(N(L(x), N(L(x''), N(y'', z'')))) -> MAX(N(L(x''), N(y'', z'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳Forward Instantiation Transformation
MAX(N(L(x), N(L(x''), N(y'', z'')))) -> MAX(N(L(x''), N(y'', z'')))
max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
innermost
one new Dependency Pair is created:
MAX(N(L(x), N(L(x''), N(y'', z'')))) -> MAX(N(L(x''), N(y'', z'')))
MAX(N(L(x), N(L(x''''), N(L(x'''''), N(y'''', z''''))))) -> MAX(N(L(x''''), N(L(x'''''), N(y'''', z''''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 7
↳Polynomial Ordering
MAX(N(L(x), N(L(x''''), N(L(x'''''), N(y'''', z''''))))) -> MAX(N(L(x''''), N(L(x'''''), N(y'''', z''''))))
max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
innermost
MAX(N(L(x), N(L(x''''), N(L(x'''''), N(y'''', z''''))))) -> MAX(N(L(x''''), N(L(x'''''), N(y'''', z''''))))
POL(MAX(x1)) = 1 + x1 POL(L(x1)) = 0 POL(N(x1, x2)) = 1 + x2
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 6
↳FwdInst
...
→DP Problem 8
↳Dependency Graph
max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))
innermost