Term Rewriting System R:
[x, y, z]
max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

MAX(N(L(s(x)), L(s(y)))) -> MAX(N(L(x), L(y)))
MAX(N(L(x), N(y, z))) -> MAX(N(L(x), L(max(N(y, z)))))
MAX(N(L(x), N(y, z))) -> MAX(N(y, z))

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
FwdInst


Dependency Pair:

MAX(N(L(s(x)), L(s(y)))) -> MAX(N(L(x), L(y)))


Rules:


max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MAX(N(L(s(x)), L(s(y)))) -> MAX(N(L(x), L(y)))
one new Dependency Pair is created:

MAX(N(L(s(s(x''))), L(s(s(y''))))) -> MAX(N(L(s(x'')), L(s(y''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
Forward Instantiation Transformation
       →DP Problem 2
FwdInst


Dependency Pair:

MAX(N(L(s(s(x''))), L(s(s(y''))))) -> MAX(N(L(s(x'')), L(s(y''))))


Rules:


max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MAX(N(L(s(s(x''))), L(s(s(y''))))) -> MAX(N(L(s(x'')), L(s(y''))))
one new Dependency Pair is created:

MAX(N(L(s(s(s(x'''')))), L(s(s(s(y'''')))))) -> MAX(N(L(s(s(x''''))), L(s(s(y'''')))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 4
Argument Filtering and Ordering
       →DP Problem 2
FwdInst


Dependency Pair:

MAX(N(L(s(s(s(x'''')))), L(s(s(s(y'''')))))) -> MAX(N(L(s(s(x''''))), L(s(s(y'''')))))


Rules:


max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))


Strategy:

innermost




The following dependency pair can be strictly oriented:

MAX(N(L(s(s(s(x'''')))), L(s(s(s(y'''')))))) -> MAX(N(L(s(s(x''''))), L(s(s(y'''')))))


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
MAX(x1) -> MAX(x1)
N(x1, x2) -> N(x1, x2)
L(x1) -> L(x1)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 3
FwdInst
             ...
               →DP Problem 5
Dependency Graph
       →DP Problem 2
FwdInst


Dependency Pair:


Rules:


max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Forward Instantiation Transformation


Dependency Pair:

MAX(N(L(x), N(y, z))) -> MAX(N(y, z))


Rules:


max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MAX(N(L(x), N(y, z))) -> MAX(N(y, z))
one new Dependency Pair is created:

MAX(N(L(x), N(L(x''), N(y'', z'')))) -> MAX(N(L(x''), N(y'', z'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 6
Forward Instantiation Transformation


Dependency Pair:

MAX(N(L(x), N(L(x''), N(y'', z'')))) -> MAX(N(L(x''), N(y'', z'')))


Rules:


max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

MAX(N(L(x), N(L(x''), N(y'', z'')))) -> MAX(N(L(x''), N(y'', z'')))
one new Dependency Pair is created:

MAX(N(L(x), N(L(x''''), N(L(x'''''), N(y'''', z''''))))) -> MAX(N(L(x''''), N(L(x'''''), N(y'''', z''''))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 6
FwdInst
             ...
               →DP Problem 7
Argument Filtering and Ordering


Dependency Pair:

MAX(N(L(x), N(L(x''''), N(L(x'''''), N(y'''', z''''))))) -> MAX(N(L(x''''), N(L(x'''''), N(y'''', z''''))))


Rules:


max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))


Strategy:

innermost




The following dependency pair can be strictly oriented:

MAX(N(L(x), N(L(x''''), N(L(x'''''), N(y'''', z''''))))) -> MAX(N(L(x''''), N(L(x'''''), N(y'''', z''''))))


There are no usable rules for innermost that need to be oriented.
Used ordering: Lexicographic Path Order with Non-Strict Precedence with Quasi Precedence:
trivial

resulting in one new DP problem.
Used Argument Filtering System:
MAX(x1) -> MAX(x1)
N(x1, x2) -> N(x1, x2)
L(x1) -> L(x1)


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 6
FwdInst
             ...
               →DP Problem 8
Dependency Graph


Dependency Pair:


Rules:


max(L(x)) -> x
max(N(L(0), L(y))) -> y
max(N(L(s(x)), L(s(y)))) -> s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) -> max(N(L(x), L(max(N(y, z)))))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes