R
↳Dependency Pair Analysis
G(x, s(y)) -> G(f(x, y), 0)
G(s(x), y) -> G(f(x, y), 0)
G(f(x, y), 0) -> G(x, 0)
G(f(x, y), 0) -> G(y, 0)
R
↳DPs
→DP Problem 1
↳Polynomial Ordering
G(f(x, y), 0) -> G(y, 0)
G(s(x), y) -> G(f(x, y), 0)
G(f(x, y), 0) -> G(x, 0)
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))
innermost
G(s(x), y) -> G(f(x, y), 0)
POL(0) = 0 POL(G(x1, x2)) = x1 + x2 POL(s(x1)) = 1 + x1 POL(f(x1, x2)) = x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polynomial Ordering
G(f(x, y), 0) -> G(y, 0)
G(f(x, y), 0) -> G(x, 0)
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))
innermost
G(f(x, y), 0) -> G(y, 0)
G(f(x, y), 0) -> G(x, 0)
POL(0) = 0 POL(G(x1, x2)) = x1 POL(f(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳Polo
→DP Problem 2
↳Polo
...
→DP Problem 3
↳Dependency Graph
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))
innermost