R
↳Dependency Pair Analysis
G(x, s(y)) -> G(f(x, y), 0)
G(s(x), y) -> G(f(x, y), 0)
G(f(x, y), 0) -> G(x, 0)
G(f(x, y), 0) -> G(y, 0)
R
↳DPs
→DP Problem 1
↳Instantiation Transformation
G(f(x, y), 0) -> G(y, 0)
G(s(x), y) -> G(f(x, y), 0)
G(f(x, y), 0) -> G(x, 0)
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))
innermost
two new Dependency Pairs are created:
G(s(x), y) -> G(f(x, y), 0)
G(s(x''), 0) -> G(f(x'', 0), 0)
G(s(x'), 0) -> G(f(x', 0), 0)
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Forward Instantiation Transformation
G(s(x'), 0) -> G(f(x', 0), 0)
G(s(x''), 0) -> G(f(x'', 0), 0)
G(f(x, y), 0) -> G(x, 0)
G(f(x, y), 0) -> G(y, 0)
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))
innermost
three new Dependency Pairs are created:
G(f(x, y), 0) -> G(x, 0)
G(f(f(x'', y''), y), 0) -> G(f(x'', y''), 0)
G(f(s(x''''), y), 0) -> G(s(x''''), 0)
G(f(s(x'''), y), 0) -> G(s(x'''), 0)
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳FwdInst
...
→DP Problem 3
↳Forward Instantiation Transformation
G(f(s(x'''), y), 0) -> G(s(x'''), 0)
G(f(s(x''''), y), 0) -> G(s(x''''), 0)
G(f(f(x'', y''), y), 0) -> G(f(x'', y''), 0)
G(s(x''), 0) -> G(f(x'', 0), 0)
G(f(x, y), 0) -> G(y, 0)
G(s(x'), 0) -> G(f(x', 0), 0)
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))
innermost
six new Dependency Pairs are created:
G(f(x, y), 0) -> G(y, 0)
G(f(x, f(x'', y'')), 0) -> G(f(x'', y''), 0)
G(f(x, s(x'''')), 0) -> G(s(x''''), 0)
G(f(x, s(x''')), 0) -> G(s(x'''), 0)
G(f(x, f(f(x'''', y''''), y'')), 0) -> G(f(f(x'''', y''''), y''), 0)
G(f(x, f(s(x''''''), y'')), 0) -> G(f(s(x''''''), y''), 0)
G(f(x, f(s(x'''''), y'')), 0) -> G(f(s(x'''''), y''), 0)
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳FwdInst
...
→DP Problem 4
↳Forward Instantiation Transformation
G(f(x, f(s(x'''''), y'')), 0) -> G(f(s(x'''''), y''), 0)
G(f(x, f(s(x''''''), y'')), 0) -> G(f(s(x''''''), y''), 0)
G(f(x, f(f(x'''', y''''), y'')), 0) -> G(f(f(x'''', y''''), y''), 0)
G(f(x, s(x''')), 0) -> G(s(x'''), 0)
G(f(x, s(x'''')), 0) -> G(s(x''''), 0)
G(f(x, f(x'', y'')), 0) -> G(f(x'', y''), 0)
G(s(x'), 0) -> G(f(x', 0), 0)
G(f(s(x''''), y), 0) -> G(s(x''''), 0)
G(f(f(x'', y''), y), 0) -> G(f(x'', y''), 0)
G(s(x''), 0) -> G(f(x'', 0), 0)
G(f(s(x'''), y), 0) -> G(s(x'''), 0)
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))
innermost
three new Dependency Pairs are created:
G(s(x''), 0) -> G(f(x'', 0), 0)
G(s(f(x'''', y'''')), 0) -> G(f(f(x'''', y''''), 0), 0)
G(s(s(x'''''')), 0) -> G(f(s(x''''''), 0), 0)
G(s(s(x''''')), 0) -> G(f(s(x'''''), 0), 0)
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳FwdInst
...
→DP Problem 5
↳Forward Instantiation Transformation
G(f(x, f(s(x''''''), y'')), 0) -> G(f(s(x''''''), y''), 0)
G(f(x, f(f(x'''', y''''), y'')), 0) -> G(f(f(x'''', y''''), y''), 0)
G(f(x, s(x''')), 0) -> G(s(x'''), 0)
G(f(x, s(x'''')), 0) -> G(s(x''''), 0)
G(f(x, f(x'', y'')), 0) -> G(f(x'', y''), 0)
G(s(s(x''''')), 0) -> G(f(s(x'''''), 0), 0)
G(s(s(x'''''')), 0) -> G(f(s(x''''''), 0), 0)
G(s(f(x'''', y'''')), 0) -> G(f(f(x'''', y''''), 0), 0)
G(f(s(x'''), y), 0) -> G(s(x'''), 0)
G(f(f(x'', y''), y), 0) -> G(f(x'', y''), 0)
G(s(x'), 0) -> G(f(x', 0), 0)
G(f(s(x''''), y), 0) -> G(s(x''''), 0)
G(f(x, f(s(x'''''), y'')), 0) -> G(f(s(x'''''), y''), 0)
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))
innermost
three new Dependency Pairs are created:
G(s(x'), 0) -> G(f(x', 0), 0)
G(s(f(x'''', y'''')), 0) -> G(f(f(x'''', y''''), 0), 0)
G(s(s(x'''''')), 0) -> G(f(s(x''''''), 0), 0)
G(s(s(x''''')), 0) -> G(f(s(x'''''), 0), 0)
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳FwdInst
...
→DP Problem 6
↳Remaining Obligation(s)
G(f(x, f(s(x'''''), y'')), 0) -> G(f(s(x'''''), y''), 0)
G(f(x, f(f(x'''', y''''), y'')), 0) -> G(f(f(x'''', y''''), y''), 0)
G(f(x, s(x''')), 0) -> G(s(x'''), 0)
G(f(x, s(x'''')), 0) -> G(s(x''''), 0)
G(f(x, f(x'', y'')), 0) -> G(f(x'', y''), 0)
G(s(s(x''''')), 0) -> G(f(s(x'''''), 0), 0)
G(s(s(x'''''')), 0) -> G(f(s(x''''''), 0), 0)
G(s(f(x'''', y'''')), 0) -> G(f(f(x'''', y''''), 0), 0)
G(s(s(x''''')), 0) -> G(f(s(x'''''), 0), 0)
G(s(s(x'''''')), 0) -> G(f(s(x''''''), 0), 0)
G(f(s(x'''), y), 0) -> G(s(x'''), 0)
G(f(f(x'', y''), y), 0) -> G(f(x'', y''), 0)
G(s(f(x'''', y'''')), 0) -> G(f(f(x'''', y''''), 0), 0)
G(f(s(x''''), y), 0) -> G(s(x''''), 0)
G(f(x, f(s(x''''''), y'')), 0) -> G(f(s(x''''''), y''), 0)
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))
innermost