R
↳Dependency Pair Analysis
G(x, s(y)) -> G(f(x, y), 0)
G(s(x), y) -> G(f(x, y), 0)
G(f(x, y), 0) -> G(x, 0)
G(f(x, y), 0) -> G(y, 0)
R
↳DPs
→DP Problem 1
↳Instantiation Transformation
G(f(x, y), 0) -> G(y, 0)
G(s(x), y) -> G(f(x, y), 0)
G(f(x, y), 0) -> G(x, 0)
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))
innermost
two new Dependency Pairs are created:
G(s(x), y) -> G(f(x, y), 0)
G(s(x''), 0) -> G(f(x'', 0), 0)
G(s(x'), 0) -> G(f(x', 0), 0)
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳Argument Filtering and Ordering
G(s(x'), 0) -> G(f(x', 0), 0)
G(s(x''), 0) -> G(f(x'', 0), 0)
G(f(x, y), 0) -> G(x, 0)
G(f(x, y), 0) -> G(y, 0)
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))
innermost
G(s(x'), 0) -> G(f(x', 0), 0)
G(s(x''), 0) -> G(f(x'', 0), 0)
G(f(x, y), 0) -> G(x, 0)
G(f(x, y), 0) -> G(y, 0)
{0, s} > f
G(x1, x2) -> G(x1, x2)
s(x1) -> s(x1)
f(x1, x2) -> f(x1, x2)
R
↳DPs
→DP Problem 1
↳Inst
→DP Problem 2
↳AFS
...
→DP Problem 3
↳Dependency Graph
g(0, f(x, x)) -> x
g(x, s(y)) -> g(f(x, y), 0)
g(s(x), y) -> g(f(x, y), 0)
g(f(x, y), 0) -> f(g(x, 0), g(y, 0))
innermost